698 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			698 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZTGSYL
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZTGSYL + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsyl.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsyl.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsyl.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 | 
						|
*                          LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
 | 
						|
*                          IWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANS
 | 
						|
*       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
 | 
						|
*      $                   LWORK, M, N
 | 
						|
*       DOUBLE PRECISION   DIF, SCALE
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
 | 
						|
*      $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZTGSYL solves the generalized Sylvester equation:
 | 
						|
*>
 | 
						|
*>             A * R - L * B = scale * C            (1)
 | 
						|
*>             D * R - L * E = scale * F
 | 
						|
*>
 | 
						|
*> where R and L are unknown m-by-n matrices, (A, D), (B, E) and
 | 
						|
*> (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
 | 
						|
*> respectively, with complex entries. A, B, D and E are upper
 | 
						|
*> triangular (i.e., (A,D) and (B,E) in generalized Schur form).
 | 
						|
*>
 | 
						|
*> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
 | 
						|
*> is an output scaling factor chosen to avoid overflow.
 | 
						|
*>
 | 
						|
*> In matrix notation (1) is equivalent to solve Zx = scale*b, where Z
 | 
						|
*> is defined as
 | 
						|
*>
 | 
						|
*>        Z = [ kron(In, A)  -kron(B**H, Im) ]        (2)
 | 
						|
*>            [ kron(In, D)  -kron(E**H, Im) ],
 | 
						|
*>
 | 
						|
*> Here Ix is the identity matrix of size x and X**H is the conjugate
 | 
						|
*> transpose of X. Kron(X, Y) is the Kronecker product between the
 | 
						|
*> matrices X and Y.
 | 
						|
*>
 | 
						|
*> If TRANS = 'C', y in the conjugate transposed system Z**H *y = scale*b
 | 
						|
*> is solved for, which is equivalent to solve for R and L in
 | 
						|
*>
 | 
						|
*>             A**H * R + D**H * L = scale * C           (3)
 | 
						|
*>             R * B**H + L * E**H = scale * -F
 | 
						|
*>
 | 
						|
*> This case (TRANS = 'C') is used to compute an one-norm-based estimate
 | 
						|
*> of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
 | 
						|
*> and (B,E), using ZLACON.
 | 
						|
*>
 | 
						|
*> If IJOB >= 1, ZTGSYL computes a Frobenius norm-based estimate of
 | 
						|
*> Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
 | 
						|
*> reciprocal of the smallest singular value of Z.
 | 
						|
*>
 | 
						|
*> This is a level-3 BLAS algorithm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N': solve the generalized sylvester equation (1).
 | 
						|
*>          = 'C': solve the "conjugate transposed" system (3).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IJOB
 | 
						|
*> \verbatim
 | 
						|
*>          IJOB is INTEGER
 | 
						|
*>          Specifies what kind of functionality to be performed.
 | 
						|
*>          =0: solve (1) only.
 | 
						|
*>          =1: The functionality of 0 and 3.
 | 
						|
*>          =2: The functionality of 0 and 4.
 | 
						|
*>          =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
 | 
						|
*>              (look ahead strategy is used).
 | 
						|
*>          =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
 | 
						|
*>              (ZGECON on sub-systems is used).
 | 
						|
*>          Not referenced if TRANS = 'C'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The order of the matrices A and D, and the row dimension of
 | 
						|
*>          the matrices C, F, R and L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices B and E, and the column dimension
 | 
						|
*>          of the matrices C, F, R and L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA, M)
 | 
						|
*>          The upper triangular matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1, M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB, N)
 | 
						|
*>          The upper triangular matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1, N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX*16 array, dimension (LDC, N)
 | 
						|
*>          On entry, C contains the right-hand-side of the first matrix
 | 
						|
*>          equation in (1) or (3).
 | 
						|
*>          On exit, if IJOB = 0, 1 or 2, C has been overwritten by
 | 
						|
*>          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
 | 
						|
*>          the solution achieved during the computation of the
 | 
						|
*>          Dif-estimate.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >= max(1, M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is COMPLEX*16 array, dimension (LDD, M)
 | 
						|
*>          The upper triangular matrix D.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDD
 | 
						|
*> \verbatim
 | 
						|
*>          LDD is INTEGER
 | 
						|
*>          The leading dimension of the array D. LDD >= max(1, M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX*16 array, dimension (LDE, N)
 | 
						|
*>          The upper triangular matrix E.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDE
 | 
						|
*> \verbatim
 | 
						|
*>          LDE is INTEGER
 | 
						|
*>          The leading dimension of the array E. LDE >= max(1, N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] F
 | 
						|
*> \verbatim
 | 
						|
*>          F is COMPLEX*16 array, dimension (LDF, N)
 | 
						|
*>          On entry, F contains the right-hand-side of the second matrix
 | 
						|
*>          equation in (1) or (3).
 | 
						|
*>          On exit, if IJOB = 0, 1 or 2, F has been overwritten by
 | 
						|
*>          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
 | 
						|
*>          the solution achieved during the computation of the
 | 
						|
*>          Dif-estimate.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDF
 | 
						|
*> \verbatim
 | 
						|
*>          LDF is INTEGER
 | 
						|
*>          The leading dimension of the array F. LDF >= max(1, M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DIF
 | 
						|
*> \verbatim
 | 
						|
*>          DIF is DOUBLE PRECISION
 | 
						|
*>          On exit DIF is the reciprocal of a lower bound of the
 | 
						|
*>          reciprocal of the Dif-function, i.e. DIF is an upper bound of
 | 
						|
*>          Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).
 | 
						|
*>          IF IJOB = 0 or TRANS = 'C', DIF is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCALE
 | 
						|
*> \verbatim
 | 
						|
*>          SCALE is DOUBLE PRECISION
 | 
						|
*>          On exit SCALE is the scaling factor in (1) or (3).
 | 
						|
*>          If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
 | 
						|
*>          to a slightly perturbed system but the input matrices A, B,
 | 
						|
*>          D and E have not been changed. If SCALE = 0, R and L will
 | 
						|
*>          hold the solutions to the homogenious system with C = F = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK > = 1.
 | 
						|
*>          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (M+N+2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>            =0: successful exit
 | 
						|
*>            <0: If INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>            >0: (A, D) and (B, E) have common or very close
 | 
						|
*>                eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complex16SYcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | 
						|
*>     Umea University, S-901 87 Umea, Sweden.
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*>  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
 | 
						|
*>      for Solving the Generalized Sylvester Equation and Estimating the
 | 
						|
*>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
 | 
						|
*>      Department of Computing Science, Umea University, S-901 87 Umea,
 | 
						|
*>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
 | 
						|
*>      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
 | 
						|
*>      No 1, 1996.
 | 
						|
*> \n
 | 
						|
*>  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
 | 
						|
*>      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
 | 
						|
*>      Appl., 15(4):1045-1060, 1994.
 | 
						|
*> \n
 | 
						|
*>  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
 | 
						|
*>      Condition Estimators for Solving the Generalized Sylvester
 | 
						|
*>      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
 | 
						|
*>      July 1989, pp 745-751.
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 | 
						|
     $                   LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
 | 
						|
     $                   IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
 | 
						|
     $                   LWORK, M, N
 | 
						|
      DOUBLE PRECISION   DIF, SCALE
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
 | 
						|
     $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*  Replaced various illegal calls to CCOPY by calls to CLASET.
 | 
						|
*  Sven Hammarling, 1/5/02.
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      COMPLEX*16         CZERO
 | 
						|
      PARAMETER          ( CZERO = (0.0D+0, 0.0D+0) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, NOTRAN
 | 
						|
      INTEGER            I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
 | 
						|
     $                   LINFO, LWMIN, MB, NB, P, PQ, Q
 | 
						|
      DOUBLE PRECISION   DSCALE, DSUM, SCALE2, SCALOC
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           LSAME, ILAENV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZGEMM, ZLACPY, ZLASET, ZSCAL, ZTGSY2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, DCMPLX, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode and test input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NOTRAN = LSAME( TRANS, 'N' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( NOTRAN ) THEN
 | 
						|
         IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
 | 
						|
            INFO = -2
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( M.LE.0 ) THEN
 | 
						|
            INFO = -3
 | 
						|
         ELSE IF( N.LE.0 ) THEN
 | 
						|
            INFO = -4
 | 
						|
         ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
            INFO = -6
 | 
						|
         ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
            INFO = -8
 | 
						|
         ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | 
						|
            INFO = -10
 | 
						|
         ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
 | 
						|
            INFO = -12
 | 
						|
         ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
 | 
						|
            INFO = -14
 | 
						|
         ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
 | 
						|
            INFO = -16
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( NOTRAN ) THEN
 | 
						|
            IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
 | 
						|
               LWMIN = MAX( 1, 2*M*N )
 | 
						|
            ELSE
 | 
						|
               LWMIN = 1
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            LWMIN = 1
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = LWMIN
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -20
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZTGSYL', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | 
						|
         SCALE = 1
 | 
						|
         IF( NOTRAN ) THEN
 | 
						|
            IF( IJOB.NE.0 ) THEN
 | 
						|
               DIF = 0
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Determine  optimal block sizes MB and NB
 | 
						|
*
 | 
						|
      MB = ILAENV( 2, 'ZTGSYL', TRANS, M, N, -1, -1 )
 | 
						|
      NB = ILAENV( 5, 'ZTGSYL', TRANS, M, N, -1, -1 )
 | 
						|
*
 | 
						|
      ISOLVE = 1
 | 
						|
      IFUNC = 0
 | 
						|
      IF( NOTRAN ) THEN
 | 
						|
         IF( IJOB.GE.3 ) THEN
 | 
						|
            IFUNC = IJOB - 2
 | 
						|
            CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
 | 
						|
            CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
 | 
						|
         ELSE IF( IJOB.GE.1 .AND. NOTRAN ) THEN
 | 
						|
            ISOLVE = 2
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE.M .AND. NB.GE.N ) )
 | 
						|
     $     THEN
 | 
						|
*
 | 
						|
*        Use unblocked Level 2 solver
 | 
						|
*
 | 
						|
         DO 30 IROUND = 1, ISOLVE
 | 
						|
*
 | 
						|
            SCALE = ONE
 | 
						|
            DSCALE = ZERO
 | 
						|
            DSUM = ONE
 | 
						|
            PQ = M*N
 | 
						|
            CALL ZTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
 | 
						|
     $                   LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
 | 
						|
     $                   INFO )
 | 
						|
            IF( DSCALE.NE.ZERO ) THEN
 | 
						|
               IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
 | 
						|
                  DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
 | 
						|
               ELSE
 | 
						|
                  DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
 | 
						|
               IF( NOTRAN ) THEN
 | 
						|
                  IFUNC = IJOB
 | 
						|
               END IF
 | 
						|
               SCALE2 = SCALE
 | 
						|
               CALL ZLACPY( 'F', M, N, C, LDC, WORK, M )
 | 
						|
               CALL ZLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
 | 
						|
               CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
 | 
						|
               CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
 | 
						|
            ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
 | 
						|
               CALL ZLACPY( 'F', M, N, WORK, M, C, LDC )
 | 
						|
               CALL ZLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
 | 
						|
               SCALE = SCALE2
 | 
						|
            END IF
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
         RETURN
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Determine block structure of A
 | 
						|
*
 | 
						|
      P = 0
 | 
						|
      I = 1
 | 
						|
   40 CONTINUE
 | 
						|
      IF( I.GT.M )
 | 
						|
     $   GO TO 50
 | 
						|
      P = P + 1
 | 
						|
      IWORK( P ) = I
 | 
						|
      I = I + MB
 | 
						|
      IF( I.GE.M )
 | 
						|
     $   GO TO 50
 | 
						|
      GO TO 40
 | 
						|
   50 CONTINUE
 | 
						|
      IWORK( P+1 ) = M + 1
 | 
						|
      IF( IWORK( P ).EQ.IWORK( P+1 ) )
 | 
						|
     $   P = P - 1
 | 
						|
*
 | 
						|
*     Determine block structure of B
 | 
						|
*
 | 
						|
      Q = P + 1
 | 
						|
      J = 1
 | 
						|
   60 CONTINUE
 | 
						|
      IF( J.GT.N )
 | 
						|
     $   GO TO 70
 | 
						|
*
 | 
						|
      Q = Q + 1
 | 
						|
      IWORK( Q ) = J
 | 
						|
      J = J + NB
 | 
						|
      IF( J.GE.N )
 | 
						|
     $   GO TO 70
 | 
						|
      GO TO 60
 | 
						|
*
 | 
						|
   70 CONTINUE
 | 
						|
      IWORK( Q+1 ) = N + 1
 | 
						|
      IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
 | 
						|
     $   Q = Q - 1
 | 
						|
*
 | 
						|
      IF( NOTRAN ) THEN
 | 
						|
         DO 150 IROUND = 1, ISOLVE
 | 
						|
*
 | 
						|
*           Solve (I, J) - subsystem
 | 
						|
*               A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
 | 
						|
*               D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
 | 
						|
*           for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
 | 
						|
*
 | 
						|
            PQ = 0
 | 
						|
            SCALE = ONE
 | 
						|
            DSCALE = ZERO
 | 
						|
            DSUM = ONE
 | 
						|
            DO 130 J = P + 2, Q
 | 
						|
               JS = IWORK( J )
 | 
						|
               JE = IWORK( J+1 ) - 1
 | 
						|
               NB = JE - JS + 1
 | 
						|
               DO 120 I = P, 1, -1
 | 
						|
                  IS = IWORK( I )
 | 
						|
                  IE = IWORK( I+1 ) - 1
 | 
						|
                  MB = IE - IS + 1
 | 
						|
                  CALL ZTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
 | 
						|
     $                         B( JS, JS ), LDB, C( IS, JS ), LDC,
 | 
						|
     $                         D( IS, IS ), LDD, E( JS, JS ), LDE,
 | 
						|
     $                         F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
 | 
						|
     $                         LINFO )
 | 
						|
                  IF( LINFO.GT.0 )
 | 
						|
     $               INFO = LINFO
 | 
						|
                  PQ = PQ + MB*NB
 | 
						|
                  IF( SCALOC.NE.ONE ) THEN
 | 
						|
                     DO 80 K = 1, JS - 1
 | 
						|
                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                              C( 1, K ), 1 )
 | 
						|
                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                              F( 1, K ), 1 )
 | 
						|
   80                CONTINUE
 | 
						|
                     DO 90 K = JS, JE
 | 
						|
                        CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                              C( 1, K ), 1 )
 | 
						|
                        CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                              F( 1, K ), 1 )
 | 
						|
   90                CONTINUE
 | 
						|
                     DO 100 K = JS, JE
 | 
						|
                        CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                              C( IE+1, K ), 1 )
 | 
						|
                        CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                              F( IE+1, K ), 1 )
 | 
						|
  100                CONTINUE
 | 
						|
                     DO 110 K = JE + 1, N
 | 
						|
                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                              C( 1, K ), 1 )
 | 
						|
                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                              F( 1, K ), 1 )
 | 
						|
  110                CONTINUE
 | 
						|
                     SCALE = SCALE*SCALOC
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Substitute R(I,J) and L(I,J) into remaining equation.
 | 
						|
*
 | 
						|
                  IF( I.GT.1 ) THEN
 | 
						|
                     CALL ZGEMM( 'N', 'N', IS-1, NB, MB,
 | 
						|
     $                           DCMPLX( -ONE, ZERO ), A( 1, IS ), LDA,
 | 
						|
     $                           C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
 | 
						|
     $                           C( 1, JS ), LDC )
 | 
						|
                     CALL ZGEMM( 'N', 'N', IS-1, NB, MB,
 | 
						|
     $                           DCMPLX( -ONE, ZERO ), D( 1, IS ), LDD,
 | 
						|
     $                           C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
 | 
						|
     $                           F( 1, JS ), LDF )
 | 
						|
                  END IF
 | 
						|
                  IF( J.LT.Q ) THEN
 | 
						|
                     CALL ZGEMM( 'N', 'N', MB, N-JE, NB,
 | 
						|
     $                           DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
 | 
						|
     $                           B( JS, JE+1 ), LDB,
 | 
						|
     $                           DCMPLX( ONE, ZERO ), C( IS, JE+1 ),
 | 
						|
     $                           LDC )
 | 
						|
                     CALL ZGEMM( 'N', 'N', MB, N-JE, NB,
 | 
						|
     $                           DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
 | 
						|
     $                           E( JS, JE+1 ), LDE,
 | 
						|
     $                           DCMPLX( ONE, ZERO ), F( IS, JE+1 ),
 | 
						|
     $                           LDF )
 | 
						|
                  END IF
 | 
						|
  120          CONTINUE
 | 
						|
  130       CONTINUE
 | 
						|
            IF( DSCALE.NE.ZERO ) THEN
 | 
						|
               IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
 | 
						|
                  DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
 | 
						|
               ELSE
 | 
						|
                  DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
 | 
						|
               IF( NOTRAN ) THEN
 | 
						|
                  IFUNC = IJOB
 | 
						|
               END IF
 | 
						|
               SCALE2 = SCALE
 | 
						|
               CALL ZLACPY( 'F', M, N, C, LDC, WORK, M )
 | 
						|
               CALL ZLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
 | 
						|
               CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
 | 
						|
               CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
 | 
						|
            ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
 | 
						|
               CALL ZLACPY( 'F', M, N, WORK, M, C, LDC )
 | 
						|
               CALL ZLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
 | 
						|
               SCALE = SCALE2
 | 
						|
            END IF
 | 
						|
  150    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Solve transposed (I, J)-subsystem
 | 
						|
*            A(I, I)**H * R(I, J) + D(I, I)**H * L(I, J) = C(I, J)
 | 
						|
*            R(I, J) * B(J, J)  + L(I, J) * E(J, J) = -F(I, J)
 | 
						|
*        for I = 1,2,..., P; J = Q, Q-1,..., 1
 | 
						|
*
 | 
						|
         SCALE = ONE
 | 
						|
         DO 210 I = 1, P
 | 
						|
            IS = IWORK( I )
 | 
						|
            IE = IWORK( I+1 ) - 1
 | 
						|
            MB = IE - IS + 1
 | 
						|
            DO 200 J = Q, P + 2, -1
 | 
						|
               JS = IWORK( J )
 | 
						|
               JE = IWORK( J+1 ) - 1
 | 
						|
               NB = JE - JS + 1
 | 
						|
               CALL ZTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
 | 
						|
     $                      B( JS, JS ), LDB, C( IS, JS ), LDC,
 | 
						|
     $                      D( IS, IS ), LDD, E( JS, JS ), LDE,
 | 
						|
     $                      F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
 | 
						|
     $                      LINFO )
 | 
						|
               IF( LINFO.GT.0 )
 | 
						|
     $            INFO = LINFO
 | 
						|
               IF( SCALOC.NE.ONE ) THEN
 | 
						|
                  DO 160 K = 1, JS - 1
 | 
						|
                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
 | 
						|
     $                           1 )
 | 
						|
                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
 | 
						|
     $                           1 )
 | 
						|
  160             CONTINUE
 | 
						|
                  DO 170 K = JS, JE
 | 
						|
                     CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                           C( 1, K ), 1 )
 | 
						|
                     CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                           F( 1, K ), 1 )
 | 
						|
  170             CONTINUE
 | 
						|
                  DO 180 K = JS, JE
 | 
						|
                     CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                           C( IE+1, K ), 1 )
 | 
						|
                     CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
 | 
						|
     $                           F( IE+1, K ), 1 )
 | 
						|
  180             CONTINUE
 | 
						|
                  DO 190 K = JE + 1, N
 | 
						|
                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
 | 
						|
     $                           1 )
 | 
						|
                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
 | 
						|
     $                           1 )
 | 
						|
  190             CONTINUE
 | 
						|
                  SCALE = SCALE*SCALOC
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Substitute R(I,J) and L(I,J) into remaining equation.
 | 
						|
*
 | 
						|
               IF( J.GT.P+2 ) THEN
 | 
						|
                  CALL ZGEMM( 'N', 'C', MB, JS-1, NB,
 | 
						|
     $                        DCMPLX( ONE, ZERO ), C( IS, JS ), LDC,
 | 
						|
     $                        B( 1, JS ), LDB, DCMPLX( ONE, ZERO ),
 | 
						|
     $                        F( IS, 1 ), LDF )
 | 
						|
                  CALL ZGEMM( 'N', 'C', MB, JS-1, NB,
 | 
						|
     $                        DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
 | 
						|
     $                        E( 1, JS ), LDE, DCMPLX( ONE, ZERO ),
 | 
						|
     $                        F( IS, 1 ), LDF )
 | 
						|
               END IF
 | 
						|
               IF( I.LT.P ) THEN
 | 
						|
                  CALL ZGEMM( 'C', 'N', M-IE, NB, MB,
 | 
						|
     $                        DCMPLX( -ONE, ZERO ), A( IS, IE+1 ), LDA,
 | 
						|
     $                        C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
 | 
						|
     $                        C( IE+1, JS ), LDC )
 | 
						|
                  CALL ZGEMM( 'C', 'N', M-IE, NB, MB,
 | 
						|
     $                        DCMPLX( -ONE, ZERO ), D( IS, IE+1 ), LDD,
 | 
						|
     $                        F( IS, JS ), LDF, DCMPLX( ONE, ZERO ),
 | 
						|
     $                        C( IE+1, JS ), LDC )
 | 
						|
               END IF
 | 
						|
  200       CONTINUE
 | 
						|
  210    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZTGSYL
 | 
						|
*
 | 
						|
      END
 |