269 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			269 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZSYR performs the symmetric rank-1 update of a complex symmetric matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZSYR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZSYR( UPLO, N, ALPHA, X, INCX, A, LDA )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INCX, LDA, N
 | 
						|
*       COMPLEX*16         ALPHA
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         A( LDA, * ), X( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZSYR   performs the symmetric rank 1 operation
 | 
						|
*>
 | 
						|
*>    A := alpha*x*x**H + A,
 | 
						|
*>
 | 
						|
*> where alpha is a complex scalar, x is an n element vector and A is an
 | 
						|
*> n by n symmetric matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On entry, UPLO specifies whether the upper or lower
 | 
						|
*>           triangular part of the array A is to be referenced as
 | 
						|
*>           follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   Only the upper triangular part of A
 | 
						|
*>                                  is to be referenced.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   Only the lower triangular part of A
 | 
						|
*>                                  is to be referenced.
 | 
						|
*>
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the order of the matrix A.
 | 
						|
*>           N must be at least zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX*16
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension at least
 | 
						|
*>           ( 1 + ( N - 1 )*abs( INCX ) ).
 | 
						|
*>           Before entry, the incremented array X must contain the N-
 | 
						|
*>           element vector x.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>           On entry, INCX specifies the increment for the elements of
 | 
						|
*>           X. INCX must not be zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension ( LDA, N )
 | 
						|
*>           Before entry, with  UPLO = 'U' or 'u', the leading n by n
 | 
						|
*>           upper triangular part of the array A must contain the upper
 | 
						|
*>           triangular part of the symmetric matrix and the strictly
 | 
						|
*>           lower triangular part of A is not referenced. On exit, the
 | 
						|
*>           upper triangular part of the array A is overwritten by the
 | 
						|
*>           upper triangular part of the updated matrix.
 | 
						|
*>           Before entry, with UPLO = 'L' or 'l', the leading n by n
 | 
						|
*>           lower triangular part of the array A must contain the lower
 | 
						|
*>           triangular part of the symmetric matrix and the strictly
 | 
						|
*>           upper triangular part of A is not referenced. On exit, the
 | 
						|
*>           lower triangular part of the array A is overwritten by the
 | 
						|
*>           lower triangular part of the updated matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*>           in the calling (sub) program. LDA must be at least
 | 
						|
*>           max( 1, N ).
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complex16SYauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZSYR( UPLO, N, ALPHA, X, INCX, A, LDA )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INCX, LDA, N
 | 
						|
      COMPLEX*16         ALPHA
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * ), X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ZERO
 | 
						|
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, INFO, IX, J, JX, KX
 | 
						|
      COMPLEX*16         TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( INCX.EQ.0 ) THEN
 | 
						|
         INFO = 5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = 7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZSYR  ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Set the start point in X if the increment is not unity.
 | 
						|
*
 | 
						|
      IF( INCX.LE.0 ) THEN
 | 
						|
         KX = 1 - ( N-1 )*INCX
 | 
						|
      ELSE IF( INCX.NE.1 ) THEN
 | 
						|
         KX = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of A are
 | 
						|
*     accessed sequentially with one pass through the triangular part
 | 
						|
*     of A.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*        Form  A  when A is stored in upper triangle.
 | 
						|
*
 | 
						|
         IF( INCX.EQ.1 ) THEN
 | 
						|
            DO 20 J = 1, N
 | 
						|
               IF( X( J ).NE.ZERO ) THEN
 | 
						|
                  TEMP = ALPHA*X( J )
 | 
						|
                  DO 10 I = 1, J
 | 
						|
                     A( I, J ) = A( I, J ) + X( I )*TEMP
 | 
						|
   10             CONTINUE
 | 
						|
               END IF
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            DO 40 J = 1, N
 | 
						|
               IF( X( JX ).NE.ZERO ) THEN
 | 
						|
                  TEMP = ALPHA*X( JX )
 | 
						|
                  IX = KX
 | 
						|
                  DO 30 I = 1, J
 | 
						|
                     A( I, J ) = A( I, J ) + X( IX )*TEMP
 | 
						|
                     IX = IX + INCX
 | 
						|
   30             CONTINUE
 | 
						|
               END IF
 | 
						|
               JX = JX + INCX
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  A  when A is stored in lower triangle.
 | 
						|
*
 | 
						|
         IF( INCX.EQ.1 ) THEN
 | 
						|
            DO 60 J = 1, N
 | 
						|
               IF( X( J ).NE.ZERO ) THEN
 | 
						|
                  TEMP = ALPHA*X( J )
 | 
						|
                  DO 50 I = J, N
 | 
						|
                     A( I, J ) = A( I, J ) + X( I )*TEMP
 | 
						|
   50             CONTINUE
 | 
						|
               END IF
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            DO 80 J = 1, N
 | 
						|
               IF( X( JX ).NE.ZERO ) THEN
 | 
						|
                  TEMP = ALPHA*X( JX )
 | 
						|
                  IX = JX
 | 
						|
                  DO 70 I = J, N
 | 
						|
                     A( I, J ) = A( I, J ) + X( IX )*TEMP
 | 
						|
                     IX = IX + INCX
 | 
						|
   70             CONTINUE
 | 
						|
               END IF
 | 
						|
               JX = JX + INCX
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZSYR
 | 
						|
*
 | 
						|
      END
 |