341 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			341 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZSPMV computes a matrix-vector product for complex vectors using a complex symmetric packed matrix
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZSPMV + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspmv.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspmv.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspmv.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INCX, INCY, N
 | 
						|
*       COMPLEX*16         ALPHA, BETA
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         AP( * ), X( * ), Y( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZSPMV  performs the matrix-vector operation
 | 
						|
*>
 | 
						|
*>    y := alpha*A*x + beta*y,
 | 
						|
*>
 | 
						|
*> where alpha and beta are scalars, x and y are n element vectors and
 | 
						|
*> A is an n by n symmetric matrix, supplied in packed form.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On entry, UPLO specifies whether the upper or lower
 | 
						|
*>           triangular part of the matrix A is supplied in the packed
 | 
						|
*>           array AP as follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   The upper triangular part of A is
 | 
						|
*>                                  supplied in AP.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   The lower triangular part of A is
 | 
						|
*>                                  supplied in AP.
 | 
						|
*>
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the order of the matrix A.
 | 
						|
*>           N must be at least zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX*16
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is COMPLEX*16 array, dimension at least
 | 
						|
*>           ( ( N*( N + 1 ) )/2 ).
 | 
						|
*>           Before entry, with UPLO = 'U' or 'u', the array AP must
 | 
						|
*>           contain the upper triangular part of the symmetric matrix
 | 
						|
*>           packed sequentially, column by column, so that AP( 1 )
 | 
						|
*>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 | 
						|
*>           and a( 2, 2 ) respectively, and so on.
 | 
						|
*>           Before entry, with UPLO = 'L' or 'l', the array AP must
 | 
						|
*>           contain the lower triangular part of the symmetric matrix
 | 
						|
*>           packed sequentially, column by column, so that AP( 1 )
 | 
						|
*>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 | 
						|
*>           and a( 3, 1 ) respectively, and so on.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension at least
 | 
						|
*>           ( 1 + ( N - 1 )*abs( INCX ) ).
 | 
						|
*>           Before entry, the incremented array X must contain the N-
 | 
						|
*>           element vector x.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>           On entry, INCX specifies the increment for the elements of
 | 
						|
*>           X. INCX must not be zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is COMPLEX*16
 | 
						|
*>           On entry, BETA specifies the scalar beta. When BETA is
 | 
						|
*>           supplied as zero then Y need not be set on input.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Y
 | 
						|
*> \verbatim
 | 
						|
*>          Y is COMPLEX*16 array, dimension at least
 | 
						|
*>           ( 1 + ( N - 1 )*abs( INCY ) ).
 | 
						|
*>           Before entry, the incremented array Y must contain the n
 | 
						|
*>           element vector y. On exit, Y is overwritten by the updated
 | 
						|
*>           vector y.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCY
 | 
						|
*> \verbatim
 | 
						|
*>          INCY is INTEGER
 | 
						|
*>           On entry, INCY specifies the increment for the elements of
 | 
						|
*>           Y. INCY must not be zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INCX, INCY, N
 | 
						|
      COMPLEX*16         ALPHA, BETA
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         AP( * ), X( * ), Y( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ONE
 | 
						|
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
      COMPLEX*16         ZERO
 | 
						|
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
 | 
						|
      COMPLEX*16         TEMP1, TEMP2
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( INCX.EQ.0 ) THEN
 | 
						|
         INFO = 6
 | 
						|
      ELSE IF( INCY.EQ.0 ) THEN
 | 
						|
         INFO = 9
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZSPMV ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Set up the start points in  X  and  Y.
 | 
						|
*
 | 
						|
      IF( INCX.GT.0 ) THEN
 | 
						|
         KX = 1
 | 
						|
      ELSE
 | 
						|
         KX = 1 - ( N-1 )*INCX
 | 
						|
      END IF
 | 
						|
      IF( INCY.GT.0 ) THEN
 | 
						|
         KY = 1
 | 
						|
      ELSE
 | 
						|
         KY = 1 - ( N-1 )*INCY
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of the array AP
 | 
						|
*     are accessed sequentially with one pass through AP.
 | 
						|
*
 | 
						|
*     First form  y := beta*y.
 | 
						|
*
 | 
						|
      IF( BETA.NE.ONE ) THEN
 | 
						|
         IF( INCY.EQ.1 ) THEN
 | 
						|
            IF( BETA.EQ.ZERO ) THEN
 | 
						|
               DO 10 I = 1, N
 | 
						|
                  Y( I ) = ZERO
 | 
						|
   10          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 20 I = 1, N
 | 
						|
                  Y( I ) = BETA*Y( I )
 | 
						|
   20          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IY = KY
 | 
						|
            IF( BETA.EQ.ZERO ) THEN
 | 
						|
               DO 30 I = 1, N
 | 
						|
                  Y( IY ) = ZERO
 | 
						|
                  IY = IY + INCY
 | 
						|
   30          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 40 I = 1, N
 | 
						|
                  Y( IY ) = BETA*Y( IY )
 | 
						|
                  IY = IY + INCY
 | 
						|
   40          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( ALPHA.EQ.ZERO )
 | 
						|
     $   RETURN
 | 
						|
      KK = 1
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*        Form  y  when AP contains the upper triangle.
 | 
						|
*
 | 
						|
         IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
 | 
						|
            DO 60 J = 1, N
 | 
						|
               TEMP1 = ALPHA*X( J )
 | 
						|
               TEMP2 = ZERO
 | 
						|
               K = KK
 | 
						|
               DO 50 I = 1, J - 1
 | 
						|
                  Y( I ) = Y( I ) + TEMP1*AP( K )
 | 
						|
                  TEMP2 = TEMP2 + AP( K )*X( I )
 | 
						|
                  K = K + 1
 | 
						|
   50          CONTINUE
 | 
						|
               Y( J ) = Y( J ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
 | 
						|
               KK = KK + J
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            JY = KY
 | 
						|
            DO 80 J = 1, N
 | 
						|
               TEMP1 = ALPHA*X( JX )
 | 
						|
               TEMP2 = ZERO
 | 
						|
               IX = KX
 | 
						|
               IY = KY
 | 
						|
               DO 70 K = KK, KK + J - 2
 | 
						|
                  Y( IY ) = Y( IY ) + TEMP1*AP( K )
 | 
						|
                  TEMP2 = TEMP2 + AP( K )*X( IX )
 | 
						|
                  IX = IX + INCX
 | 
						|
                  IY = IY + INCY
 | 
						|
   70          CONTINUE
 | 
						|
               Y( JY ) = Y( JY ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
 | 
						|
               JX = JX + INCX
 | 
						|
               JY = JY + INCY
 | 
						|
               KK = KK + J
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  y  when AP contains the lower triangle.
 | 
						|
*
 | 
						|
         IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
 | 
						|
            DO 100 J = 1, N
 | 
						|
               TEMP1 = ALPHA*X( J )
 | 
						|
               TEMP2 = ZERO
 | 
						|
               Y( J ) = Y( J ) + TEMP1*AP( KK )
 | 
						|
               K = KK + 1
 | 
						|
               DO 90 I = J + 1, N
 | 
						|
                  Y( I ) = Y( I ) + TEMP1*AP( K )
 | 
						|
                  TEMP2 = TEMP2 + AP( K )*X( I )
 | 
						|
                  K = K + 1
 | 
						|
   90          CONTINUE
 | 
						|
               Y( J ) = Y( J ) + ALPHA*TEMP2
 | 
						|
               KK = KK + ( N-J+1 )
 | 
						|
  100       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            JY = KY
 | 
						|
            DO 120 J = 1, N
 | 
						|
               TEMP1 = ALPHA*X( JX )
 | 
						|
               TEMP2 = ZERO
 | 
						|
               Y( JY ) = Y( JY ) + TEMP1*AP( KK )
 | 
						|
               IX = JX
 | 
						|
               IY = JY
 | 
						|
               DO 110 K = KK + 1, KK + N - J
 | 
						|
                  IX = IX + INCX
 | 
						|
                  IY = IY + INCY
 | 
						|
                  Y( IY ) = Y( IY ) + TEMP1*AP( K )
 | 
						|
                  TEMP2 = TEMP2 + AP( K )*X( IX )
 | 
						|
  110          CONTINUE
 | 
						|
               Y( JY ) = Y( JY ) + ALPHA*TEMP2
 | 
						|
               JX = JX + INCX
 | 
						|
               JY = JY + INCY
 | 
						|
               KK = KK + ( N-J+1 )
 | 
						|
  120       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZSPMV
 | 
						|
*
 | 
						|
      END
 |