565 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			565 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> ZHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZHEEVX + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 | 
						|
*                          ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
 | 
						|
*                          IWORK, IFAIL, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, RANGE, UPLO
 | 
						|
*       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
 | 
						|
*       DOUBLE PRECISION   ABSTOL, VL, VU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IFAIL( * ), IWORK( * )
 | 
						|
*       DOUBLE PRECISION   RWORK( * ), W( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
 | 
						|
*> of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
 | 
						|
*> be selected by specifying either a range of values or a range of
 | 
						|
*> indices for the desired eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RANGE
 | 
						|
*> \verbatim
 | 
						|
*>          RANGE is CHARACTER*1
 | 
						|
*>          = 'A': all eigenvalues will be found.
 | 
						|
*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | 
						|
*>                 will be found.
 | 
						|
*>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA, N)
 | 
						|
*>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
 | 
						|
*>          leading N-by-N upper triangular part of A contains the
 | 
						|
*>          upper triangular part of the matrix A.  If UPLO = 'L',
 | 
						|
*>          the leading N-by-N lower triangular part of A contains
 | 
						|
*>          the lower triangular part of the matrix A.
 | 
						|
*>          On exit, the lower triangle (if UPLO='L') or the upper
 | 
						|
*>          triangle (if UPLO='U') of A, including the diagonal, is
 | 
						|
*>          destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is DOUBLE PRECISION
 | 
						|
*>          If RANGE='V', the lower bound of the interval to
 | 
						|
*>          be searched for eigenvalues. VL < VU.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'I'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VU
 | 
						|
*> \verbatim
 | 
						|
*>          VU is DOUBLE PRECISION
 | 
						|
*>          If RANGE='V', the upper bound of the interval to
 | 
						|
*>          be searched for eigenvalues. VL < VU.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'I'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IL
 | 
						|
*> \verbatim
 | 
						|
*>          IL is INTEGER
 | 
						|
*>          If RANGE='I', the index of the
 | 
						|
*>          smallest eigenvalue to be returned.
 | 
						|
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IU
 | 
						|
*> \verbatim
 | 
						|
*>          IU is INTEGER
 | 
						|
*>          If RANGE='I', the index of the
 | 
						|
*>          largest eigenvalue to be returned.
 | 
						|
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ABSTOL
 | 
						|
*> \verbatim
 | 
						|
*>          ABSTOL is DOUBLE PRECISION
 | 
						|
*>          The absolute error tolerance for the eigenvalues.
 | 
						|
*>          An approximate eigenvalue is accepted as converged
 | 
						|
*>          when it is determined to lie in an interval [a,b]
 | 
						|
*>          of width less than or equal to
 | 
						|
*>
 | 
						|
*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
 | 
						|
*>
 | 
						|
*>          where EPS is the machine precision.  If ABSTOL is less than
 | 
						|
*>          or equal to zero, then  EPS*|T|  will be used in its place,
 | 
						|
*>          where |T| is the 1-norm of the tridiagonal matrix obtained
 | 
						|
*>          by reducing A to tridiagonal form.
 | 
						|
*>
 | 
						|
*>          Eigenvalues will be computed most accurately when ABSTOL is
 | 
						|
*>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
 | 
						|
*>          If this routine returns with INFO>0, indicating that some
 | 
						|
*>          eigenvectors did not converge, try setting ABSTOL to
 | 
						|
*>          2*DLAMCH('S').
 | 
						|
*>
 | 
						|
*>          See "Computing Small Singular Values of Bidiagonal Matrices
 | 
						|
*>          with Guaranteed High Relative Accuracy," by Demmel and
 | 
						|
*>          Kahan, LAPACK Working Note #3.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The total number of eigenvalues found.  0 <= M <= N.
 | 
						|
*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          On normal exit, the first M elements contain the selected
 | 
						|
*>          eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
 | 
						|
*>          contain the orthonormal eigenvectors of the matrix A
 | 
						|
*>          corresponding to the selected eigenvalues, with the i-th
 | 
						|
*>          column of Z holding the eigenvector associated with W(i).
 | 
						|
*>          If an eigenvector fails to converge, then that column of Z
 | 
						|
*>          contains the latest approximation to the eigenvector, and the
 | 
						|
*>          index of the eigenvector is returned in IFAIL.
 | 
						|
*>          If JOBZ = 'N', then Z is not referenced.
 | 
						|
*>          Note: the user must ensure that at least max(1,M) columns are
 | 
						|
*>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | 
						|
*>          is not known in advance and an upper bound must be used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          JOBZ = 'V', LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The length of the array WORK.  LWORK >= 1, when N <= 1;
 | 
						|
*>          otherwise 2*N.
 | 
						|
*>          For optimal efficiency, LWORK >= (NB+1)*N,
 | 
						|
*>          where NB is the max of the blocksize for ZHETRD and for
 | 
						|
*>          ZUNMTR as returned by ILAENV.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (7*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (5*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IFAIL
 | 
						|
*> \verbatim
 | 
						|
*>          IFAIL is INTEGER array, dimension (N)
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, the first M elements of
 | 
						|
*>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
 | 
						|
*>          indices of the eigenvectors that failed to converge.
 | 
						|
*>          If JOBZ = 'N', then IFAIL is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, then i eigenvectors failed to converge.
 | 
						|
*>                Their indices are stored in array IFAIL.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2016
 | 
						|
*
 | 
						|
*> \ingroup complex16HEeigen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 | 
						|
     $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
 | 
						|
     $                   IWORK, IFAIL, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, RANGE, UPLO
 | 
						|
      INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
 | 
						|
      DOUBLE PRECISION   ABSTOL, VL, VU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IFAIL( * ), IWORK( * )
 | 
						|
      DOUBLE PRECISION   RWORK( * ), W( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      COMPLEX*16         CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
 | 
						|
     $                   WANTZ
 | 
						|
      CHARACTER          ORDER
 | 
						|
      INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
 | 
						|
     $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
 | 
						|
     $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
 | 
						|
     $                   NSPLIT
 | 
						|
      DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
 | 
						|
     $                   SIGMA, SMLNUM, TMP1, VLL, VUU
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANHE
 | 
						|
      EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
 | 
						|
     $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
 | 
						|
     $                   ZUNMTR
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      LOWER = LSAME( UPLO, 'L' )
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      ALLEIG = LSAME( RANGE, 'A' )
 | 
						|
      VALEIG = LSAME( RANGE, 'V' )
 | 
						|
      INDEIG = LSAME( RANGE, 'I' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE
 | 
						|
         IF( VALEIG ) THEN
 | 
						|
            IF( N.GT.0 .AND. VU.LE.VL )
 | 
						|
     $         INFO = -8
 | 
						|
         ELSE IF( INDEIG ) THEN
 | 
						|
            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
 | 
						|
               INFO = -9
 | 
						|
            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | 
						|
               INFO = -10
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | 
						|
            INFO = -15
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( N.LE.1 ) THEN
 | 
						|
            LWKMIN = 1
 | 
						|
            WORK( 1 ) = LWKMIN
 | 
						|
         ELSE
 | 
						|
            LWKMIN = 2*N
 | 
						|
            NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
 | 
						|
            NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
 | 
						|
            LWKOPT = MAX( 1, ( NB + 1 )*N )
 | 
						|
            WORK( 1 ) = LWKOPT
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
 | 
						|
     $      INFO = -17
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZHEEVX', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      M = 0
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         IF( ALLEIG .OR. INDEIG ) THEN
 | 
						|
            M = 1
 | 
						|
            W( 1 ) = A( 1, 1 )
 | 
						|
         ELSE IF( VALEIG ) THEN
 | 
						|
            IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
 | 
						|
     $           THEN
 | 
						|
               M = 1
 | 
						|
               W( 1 ) = A( 1, 1 )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         IF( WANTZ )
 | 
						|
     $      Z( 1, 1 ) = CONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine constants.
 | 
						|
*
 | 
						|
      SAFMIN = DLAMCH( 'Safe minimum' )
 | 
						|
      EPS = DLAMCH( 'Precision' )
 | 
						|
      SMLNUM = SAFMIN / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      RMIN = SQRT( SMLNUM )
 | 
						|
      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
 | 
						|
*
 | 
						|
*     Scale matrix to allowable range, if necessary.
 | 
						|
*
 | 
						|
      ISCALE = 0
 | 
						|
      ABSTLL = ABSTOL
 | 
						|
      IF( VALEIG ) THEN
 | 
						|
         VLL = VL
 | 
						|
         VUU = VU
 | 
						|
      END IF
 | 
						|
      ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         SIGMA = RMIN / ANRM
 | 
						|
      ELSE IF( ANRM.GT.RMAX ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         SIGMA = RMAX / ANRM
 | 
						|
      END IF
 | 
						|
      IF( ISCALE.EQ.1 ) THEN
 | 
						|
         IF( LOWER ) THEN
 | 
						|
            DO 10 J = 1, N
 | 
						|
               CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 20 J = 1, N
 | 
						|
               CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
         IF( ABSTOL.GT.0 )
 | 
						|
     $      ABSTLL = ABSTOL*SIGMA
 | 
						|
         IF( VALEIG ) THEN
 | 
						|
            VLL = VL*SIGMA
 | 
						|
            VUU = VU*SIGMA
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
 | 
						|
*
 | 
						|
      INDD = 1
 | 
						|
      INDE = INDD + N
 | 
						|
      INDRWK = INDE + N
 | 
						|
      INDTAU = 1
 | 
						|
      INDWRK = INDTAU + N
 | 
						|
      LLWORK = LWORK - INDWRK + 1
 | 
						|
      CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
 | 
						|
     $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
 | 
						|
*
 | 
						|
*     If all eigenvalues are desired and ABSTOL is less than or equal to
 | 
						|
*     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
 | 
						|
*     some eigenvalue, then try DSTEBZ.
 | 
						|
*
 | 
						|
      TEST = .FALSE.
 | 
						|
      IF( INDEIG ) THEN
 | 
						|
         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
 | 
						|
            TEST = .TRUE.
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
 | 
						|
         CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
 | 
						|
         INDEE = INDRWK + 2*N
 | 
						|
         IF( .NOT.WANTZ ) THEN
 | 
						|
            CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
 | 
						|
            CALL DSTERF( N, W, RWORK( INDEE ), INFO )
 | 
						|
         ELSE
 | 
						|
            CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
 | 
						|
            CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
 | 
						|
     $                   WORK( INDWRK ), LLWORK, IINFO )
 | 
						|
            CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
 | 
						|
            CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
 | 
						|
     $                   RWORK( INDRWK ), INFO )
 | 
						|
            IF( INFO.EQ.0 ) THEN
 | 
						|
               DO 30 I = 1, N
 | 
						|
                  IFAIL( I ) = 0
 | 
						|
   30          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         IF( INFO.EQ.0 ) THEN
 | 
						|
            M = N
 | 
						|
            GO TO 40
 | 
						|
         END IF
 | 
						|
         INFO = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         ORDER = 'B'
 | 
						|
      ELSE
 | 
						|
         ORDER = 'E'
 | 
						|
      END IF
 | 
						|
      INDIBL = 1
 | 
						|
      INDISP = INDIBL + N
 | 
						|
      INDIWK = INDISP + N
 | 
						|
      CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
 | 
						|
     $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
 | 
						|
     $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
 | 
						|
     $             IWORK( INDIWK ), INFO )
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
 | 
						|
     $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
 | 
						|
     $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
 | 
						|
*
 | 
						|
*        Apply unitary matrix used in reduction to tridiagonal
 | 
						|
*        form to eigenvectors returned by ZSTEIN.
 | 
						|
*
 | 
						|
         CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
 | 
						|
     $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If matrix was scaled, then rescale eigenvalues appropriately.
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
      IF( ISCALE.EQ.1 ) THEN
 | 
						|
         IF( INFO.EQ.0 ) THEN
 | 
						|
            IMAX = M
 | 
						|
         ELSE
 | 
						|
            IMAX = INFO - 1
 | 
						|
         END IF
 | 
						|
         CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If eigenvalues are not in order, then sort them, along with
 | 
						|
*     eigenvectors.
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         DO 60 J = 1, M - 1
 | 
						|
            I = 0
 | 
						|
            TMP1 = W( J )
 | 
						|
            DO 50 JJ = J + 1, M
 | 
						|
               IF( W( JJ ).LT.TMP1 ) THEN
 | 
						|
                  I = JJ
 | 
						|
                  TMP1 = W( JJ )
 | 
						|
               END IF
 | 
						|
   50       CONTINUE
 | 
						|
*
 | 
						|
            IF( I.NE.0 ) THEN
 | 
						|
               ITMP1 = IWORK( INDIBL+I-1 )
 | 
						|
               W( I ) = W( J )
 | 
						|
               IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
 | 
						|
               W( J ) = TMP1
 | 
						|
               IWORK( INDIBL+J-1 ) = ITMP1
 | 
						|
               CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  ITMP1 = IFAIL( I )
 | 
						|
                  IFAIL( I ) = IFAIL( J )
 | 
						|
                  IFAIL( J ) = ITMP1
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
   60    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Set WORK(1) to optimal complex workspace size.
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZHEEVX
 | 
						|
*
 | 
						|
      END
 |