426 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			426 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SSTERF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SSTERF + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssterf.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssterf.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssterf.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSTERF( N, D, E, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               D( * ), E( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SSTERF computes all eigenvalues of a symmetric tridiagonal matrix
 | 
						|
*> using the Pal-Walker-Kahan variant of the QL or QR algorithm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          On entry, the n diagonal elements of the tridiagonal matrix.
 | 
						|
*>          On exit, if INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N-1)
 | 
						|
*>          On entry, the (n-1) subdiagonal elements of the tridiagonal
 | 
						|
*>          matrix.
 | 
						|
*>          On exit, E has been destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  the algorithm failed to find all of the eigenvalues in
 | 
						|
*>                a total of 30*N iterations; if INFO = i, then i
 | 
						|
*>                elements of E have not converged to zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SSTERF( N, D, E, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               D( * ), E( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE, TWO, THREE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
 | 
						|
     $                   THREE = 3.0E0 )
 | 
						|
      INTEGER            MAXIT
 | 
						|
      PARAMETER          ( MAXIT = 30 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, ISCALE, JTOT, L, L1, LEND, LENDSV, LSV, M,
 | 
						|
     $                   NMAXIT
 | 
						|
      REAL               ALPHA, ANORM, BB, C, EPS, EPS2, GAMMA, OLDC,
 | 
						|
     $                   OLDGAM, P, R, RT1, RT2, RTE, S, SAFMAX, SAFMIN,
 | 
						|
     $                   SIGMA, SSFMAX, SSFMIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH, SLANST, SLAPY2
 | 
						|
      EXTERNAL           SLAMCH, SLANST, SLAPY2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLAE2, SLASCL, SLASRT, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, SIGN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
         CALL XERBLA( 'SSTERF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      IF( N.LE.1 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Determine the unit roundoff for this environment.
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'E' )
 | 
						|
      EPS2 = EPS**2
 | 
						|
      SAFMIN = SLAMCH( 'S' )
 | 
						|
      SAFMAX = ONE / SAFMIN
 | 
						|
      SSFMAX = SQRT( SAFMAX ) / THREE
 | 
						|
      SSFMIN = SQRT( SAFMIN ) / EPS2
 | 
						|
*
 | 
						|
*     Compute the eigenvalues of the tridiagonal matrix.
 | 
						|
*
 | 
						|
      NMAXIT = N*MAXIT
 | 
						|
      SIGMA = ZERO
 | 
						|
      JTOT = 0
 | 
						|
*
 | 
						|
*     Determine where the matrix splits and choose QL or QR iteration
 | 
						|
*     for each block, according to whether top or bottom diagonal
 | 
						|
*     element is smaller.
 | 
						|
*
 | 
						|
      L1 = 1
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      IF( L1.GT.N )
 | 
						|
     $   GO TO 170
 | 
						|
      IF( L1.GT.1 )
 | 
						|
     $   E( L1-1 ) = ZERO
 | 
						|
      DO 20 M = L1, N - 1
 | 
						|
         IF( ABS( E( M ) ).LE.( SQRT( ABS( D( M ) ) )*
 | 
						|
     $       SQRT( ABS( D( M+1 ) ) ) )*EPS ) THEN
 | 
						|
            E( M ) = ZERO
 | 
						|
            GO TO 30
 | 
						|
         END IF
 | 
						|
   20 CONTINUE
 | 
						|
      M = N
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      L = L1
 | 
						|
      LSV = L
 | 
						|
      LEND = M
 | 
						|
      LENDSV = LEND
 | 
						|
      L1 = M + 1
 | 
						|
      IF( LEND.EQ.L )
 | 
						|
     $   GO TO 10
 | 
						|
*
 | 
						|
*     Scale submatrix in rows and columns L to LEND
 | 
						|
*
 | 
						|
      ANORM = SLANST( 'M', LEND-L+1, D( L ), E( L ) )
 | 
						|
      ISCALE = 0
 | 
						|
      IF( ANORM.EQ.ZERO )
 | 
						|
     $   GO TO 10
 | 
						|
      IF( ANORM.GT.SSFMAX ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
 | 
						|
     $                INFO )
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
 | 
						|
     $                INFO )
 | 
						|
      ELSE IF( ANORM.LT.SSFMIN ) THEN
 | 
						|
         ISCALE = 2
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
 | 
						|
     $                INFO )
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
 | 
						|
     $                INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      DO 40 I = L, LEND - 1
 | 
						|
         E( I ) = E( I )**2
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Choose between QL and QR iteration
 | 
						|
*
 | 
						|
      IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
 | 
						|
         LEND = LSV
 | 
						|
         L = LENDSV
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LEND.GE.L ) THEN
 | 
						|
*
 | 
						|
*        QL Iteration
 | 
						|
*
 | 
						|
*        Look for small subdiagonal element.
 | 
						|
*
 | 
						|
   50    CONTINUE
 | 
						|
         IF( L.NE.LEND ) THEN
 | 
						|
            DO 60 M = L, LEND - 1
 | 
						|
               IF( ABS( E( M ) ).LE.EPS2*ABS( D( M )*D( M+1 ) ) )
 | 
						|
     $            GO TO 70
 | 
						|
   60       CONTINUE
 | 
						|
         END IF
 | 
						|
         M = LEND
 | 
						|
*
 | 
						|
   70    CONTINUE
 | 
						|
         IF( M.LT.LEND )
 | 
						|
     $      E( M ) = ZERO
 | 
						|
         P = D( L )
 | 
						|
         IF( M.EQ.L )
 | 
						|
     $      GO TO 90
 | 
						|
*
 | 
						|
*        If remaining matrix is 2 by 2, use SLAE2 to compute its
 | 
						|
*        eigenvalues.
 | 
						|
*
 | 
						|
         IF( M.EQ.L+1 ) THEN
 | 
						|
            RTE = SQRT( E( L ) )
 | 
						|
            CALL SLAE2( D( L ), RTE, D( L+1 ), RT1, RT2 )
 | 
						|
            D( L ) = RT1
 | 
						|
            D( L+1 ) = RT2
 | 
						|
            E( L ) = ZERO
 | 
						|
            L = L + 2
 | 
						|
            IF( L.LE.LEND )
 | 
						|
     $         GO TO 50
 | 
						|
            GO TO 150
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( JTOT.EQ.NMAXIT )
 | 
						|
     $      GO TO 150
 | 
						|
         JTOT = JTOT + 1
 | 
						|
*
 | 
						|
*        Form shift.
 | 
						|
*
 | 
						|
         RTE = SQRT( E( L ) )
 | 
						|
         SIGMA = ( D( L+1 )-P ) / ( TWO*RTE )
 | 
						|
         R = SLAPY2( SIGMA, ONE )
 | 
						|
         SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
 | 
						|
*
 | 
						|
         C = ONE
 | 
						|
         S = ZERO
 | 
						|
         GAMMA = D( M ) - SIGMA
 | 
						|
         P = GAMMA*GAMMA
 | 
						|
*
 | 
						|
*        Inner loop
 | 
						|
*
 | 
						|
         DO 80 I = M - 1, L, -1
 | 
						|
            BB = E( I )
 | 
						|
            R = P + BB
 | 
						|
            IF( I.NE.M-1 )
 | 
						|
     $         E( I+1 ) = S*R
 | 
						|
            OLDC = C
 | 
						|
            C = P / R
 | 
						|
            S = BB / R
 | 
						|
            OLDGAM = GAMMA
 | 
						|
            ALPHA = D( I )
 | 
						|
            GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
 | 
						|
            D( I+1 ) = OLDGAM + ( ALPHA-GAMMA )
 | 
						|
            IF( C.NE.ZERO ) THEN
 | 
						|
               P = ( GAMMA*GAMMA ) / C
 | 
						|
            ELSE
 | 
						|
               P = OLDC*BB
 | 
						|
            END IF
 | 
						|
   80    CONTINUE
 | 
						|
*
 | 
						|
         E( L ) = S*P
 | 
						|
         D( L ) = SIGMA + GAMMA
 | 
						|
         GO TO 50
 | 
						|
*
 | 
						|
*        Eigenvalue found.
 | 
						|
*
 | 
						|
   90    CONTINUE
 | 
						|
         D( L ) = P
 | 
						|
*
 | 
						|
         L = L + 1
 | 
						|
         IF( L.LE.LEND )
 | 
						|
     $      GO TO 50
 | 
						|
         GO TO 150
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        QR Iteration
 | 
						|
*
 | 
						|
*        Look for small superdiagonal element.
 | 
						|
*
 | 
						|
  100    CONTINUE
 | 
						|
         DO 110 M = L, LEND + 1, -1
 | 
						|
            IF( ABS( E( M-1 ) ).LE.EPS2*ABS( D( M )*D( M-1 ) ) )
 | 
						|
     $         GO TO 120
 | 
						|
  110    CONTINUE
 | 
						|
         M = LEND
 | 
						|
*
 | 
						|
  120    CONTINUE
 | 
						|
         IF( M.GT.LEND )
 | 
						|
     $      E( M-1 ) = ZERO
 | 
						|
         P = D( L )
 | 
						|
         IF( M.EQ.L )
 | 
						|
     $      GO TO 140
 | 
						|
*
 | 
						|
*        If remaining matrix is 2 by 2, use SLAE2 to compute its
 | 
						|
*        eigenvalues.
 | 
						|
*
 | 
						|
         IF( M.EQ.L-1 ) THEN
 | 
						|
            RTE = SQRT( E( L-1 ) )
 | 
						|
            CALL SLAE2( D( L ), RTE, D( L-1 ), RT1, RT2 )
 | 
						|
            D( L ) = RT1
 | 
						|
            D( L-1 ) = RT2
 | 
						|
            E( L-1 ) = ZERO
 | 
						|
            L = L - 2
 | 
						|
            IF( L.GE.LEND )
 | 
						|
     $         GO TO 100
 | 
						|
            GO TO 150
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( JTOT.EQ.NMAXIT )
 | 
						|
     $      GO TO 150
 | 
						|
         JTOT = JTOT + 1
 | 
						|
*
 | 
						|
*        Form shift.
 | 
						|
*
 | 
						|
         RTE = SQRT( E( L-1 ) )
 | 
						|
         SIGMA = ( D( L-1 )-P ) / ( TWO*RTE )
 | 
						|
         R = SLAPY2( SIGMA, ONE )
 | 
						|
         SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
 | 
						|
*
 | 
						|
         C = ONE
 | 
						|
         S = ZERO
 | 
						|
         GAMMA = D( M ) - SIGMA
 | 
						|
         P = GAMMA*GAMMA
 | 
						|
*
 | 
						|
*        Inner loop
 | 
						|
*
 | 
						|
         DO 130 I = M, L - 1
 | 
						|
            BB = E( I )
 | 
						|
            R = P + BB
 | 
						|
            IF( I.NE.M )
 | 
						|
     $         E( I-1 ) = S*R
 | 
						|
            OLDC = C
 | 
						|
            C = P / R
 | 
						|
            S = BB / R
 | 
						|
            OLDGAM = GAMMA
 | 
						|
            ALPHA = D( I+1 )
 | 
						|
            GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
 | 
						|
            D( I ) = OLDGAM + ( ALPHA-GAMMA )
 | 
						|
            IF( C.NE.ZERO ) THEN
 | 
						|
               P = ( GAMMA*GAMMA ) / C
 | 
						|
            ELSE
 | 
						|
               P = OLDC*BB
 | 
						|
            END IF
 | 
						|
  130    CONTINUE
 | 
						|
*
 | 
						|
         E( L-1 ) = S*P
 | 
						|
         D( L ) = SIGMA + GAMMA
 | 
						|
         GO TO 100
 | 
						|
*
 | 
						|
*        Eigenvalue found.
 | 
						|
*
 | 
						|
  140    CONTINUE
 | 
						|
         D( L ) = P
 | 
						|
*
 | 
						|
         L = L - 1
 | 
						|
         IF( L.GE.LEND )
 | 
						|
     $      GO TO 100
 | 
						|
         GO TO 150
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling if necessary
 | 
						|
*
 | 
						|
  150 CONTINUE
 | 
						|
      IF( ISCALE.EQ.1 )
 | 
						|
     $   CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
 | 
						|
     $                D( LSV ), N, INFO )
 | 
						|
      IF( ISCALE.EQ.2 )
 | 
						|
     $   CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
 | 
						|
     $                D( LSV ), N, INFO )
 | 
						|
*
 | 
						|
*     Check for no convergence to an eigenvalue after a total
 | 
						|
*     of N*MAXIT iterations.
 | 
						|
*
 | 
						|
      IF( JTOT.LT.NMAXIT )
 | 
						|
     $   GO TO 10
 | 
						|
      DO 160 I = 1, N - 1
 | 
						|
         IF( E( I ).NE.ZERO )
 | 
						|
     $      INFO = INFO + 1
 | 
						|
  160 CONTINUE
 | 
						|
      GO TO 180
 | 
						|
*
 | 
						|
*     Sort eigenvalues in increasing order.
 | 
						|
*
 | 
						|
  170 CONTINUE
 | 
						|
      CALL SLASRT( 'I', N, D, INFO )
 | 
						|
*
 | 
						|
  180 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSTERF
 | 
						|
*
 | 
						|
      END
 |