1333 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1333 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static real c_b18 = .003f;
 | 
						|
 | 
						|
/* > \brief \b SSTEMR */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SSTEMR + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstemr.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstemr.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstemr.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, */
 | 
						|
/*                          M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, */
 | 
						|
/*                          IWORK, LIWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          JOBZ, RANGE */
 | 
						|
/*       LOGICAL            TRYRAC */
 | 
						|
/*       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N */
 | 
						|
/*       REAL               VL, VU */
 | 
						|
/*       INTEGER            ISUPPZ( * ), IWORK( * ) */
 | 
						|
/*       REAL               D( * ), E( * ), W( * ), WORK( * ) */
 | 
						|
/*       REAL               Z( LDZ, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SSTEMR computes selected eigenvalues and, optionally, eigenvectors */
 | 
						|
/* > of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
 | 
						|
/* > a well defined set of pairwise different real eigenvalues, the corresponding */
 | 
						|
/* > real eigenvectors are pairwise orthogonal. */
 | 
						|
/* > */
 | 
						|
/* > The spectrum may be computed either completely or partially by specifying */
 | 
						|
/* > either an interval (VL,VU] or a range of indices IL:IU for the desired */
 | 
						|
/* > eigenvalues. */
 | 
						|
/* > */
 | 
						|
/* > Depending on the number of desired eigenvalues, these are computed either */
 | 
						|
/* > by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */
 | 
						|
/* > computed by the use of various suitable L D L^T factorizations near clusters */
 | 
						|
/* > of close eigenvalues (referred to as RRRs, Relatively Robust */
 | 
						|
/* > Representations). An informal sketch of the algorithm follows. */
 | 
						|
/* > */
 | 
						|
/* > For each unreduced block (submatrix) of T, */
 | 
						|
/* >    (a) Compute T - sigma I  = L D L^T, so that L and D */
 | 
						|
/* >        define all the wanted eigenvalues to high relative accuracy. */
 | 
						|
/* >        This means that small relative changes in the entries of D and L */
 | 
						|
/* >        cause only small relative changes in the eigenvalues and */
 | 
						|
/* >        eigenvectors. The standard (unfactored) representation of the */
 | 
						|
/* >        tridiagonal matrix T does not have this property in general. */
 | 
						|
/* >    (b) Compute the eigenvalues to suitable accuracy. */
 | 
						|
/* >        If the eigenvectors are desired, the algorithm attains full */
 | 
						|
/* >        accuracy of the computed eigenvalues only right before */
 | 
						|
/* >        the corresponding vectors have to be computed, see steps c) and d). */
 | 
						|
/* >    (c) For each cluster of close eigenvalues, select a new */
 | 
						|
/* >        shift close to the cluster, find a new factorization, and refine */
 | 
						|
/* >        the shifted eigenvalues to suitable accuracy. */
 | 
						|
/* >    (d) For each eigenvalue with a large enough relative separation compute */
 | 
						|
/* >        the corresponding eigenvector by forming a rank revealing twisted */
 | 
						|
/* >        factorization. Go back to (c) for any clusters that remain. */
 | 
						|
/* > */
 | 
						|
/* > For more details, see: */
 | 
						|
/* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
 | 
						|
/* >   to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
 | 
						|
/* >   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
 | 
						|
/* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
 | 
						|
/* >   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
 | 
						|
/* >   2004.  Also LAPACK Working Note 154. */
 | 
						|
/* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
 | 
						|
/* >   tridiagonal eigenvalue/eigenvector problem", */
 | 
						|
/* >   Computer Science Division Technical Report No. UCB/CSD-97-971, */
 | 
						|
/* >   UC Berkeley, May 1997. */
 | 
						|
/* > */
 | 
						|
/* > Further Details */
 | 
						|
/* > 1.SSTEMR works only on machines which follow IEEE-754 */
 | 
						|
/* > floating-point standard in their handling of infinities and NaNs. */
 | 
						|
/* > This permits the use of efficient inner loops avoiding a check for */
 | 
						|
/* > zero divisors. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] JOBZ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBZ is CHARACTER*1 */
 | 
						|
/* >          = 'N':  Compute eigenvalues only; */
 | 
						|
/* >          = 'V':  Compute eigenvalues and eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] RANGE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RANGE is CHARACTER*1 */
 | 
						|
/* >          = 'A': all eigenvalues will be found. */
 | 
						|
/* >          = 'V': all eigenvalues in the half-open interval (VL,VU] */
 | 
						|
/* >                 will be found. */
 | 
						|
/* >          = 'I': the IL-th through IU-th eigenvalues will be found. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] D */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D is REAL array, dimension (N) */
 | 
						|
/* >          On entry, the N diagonal elements of the tridiagonal matrix */
 | 
						|
/* >          T. On exit, D is overwritten. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] E */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          E is REAL array, dimension (N) */
 | 
						|
/* >          On entry, the (N-1) subdiagonal elements of the tridiagonal */
 | 
						|
/* >          matrix T in elements 1 to N-1 of E. E(N) need not be set on */
 | 
						|
/* >          input, but is used internally as workspace. */
 | 
						|
/* >          On exit, E is overwritten. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] VL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VL is REAL */
 | 
						|
/* > */
 | 
						|
/* >          If RANGE='V', the lower bound of the interval to */
 | 
						|
/* >          be searched for eigenvalues. VL < VU. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'I'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] VU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VU is REAL */
 | 
						|
/* > */
 | 
						|
/* >          If RANGE='V', the upper bound of the interval to */
 | 
						|
/* >          be searched for eigenvalues. VL < VU. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'I'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IL is INTEGER */
 | 
						|
/* > */
 | 
						|
/* >          If RANGE='I', the index of the */
 | 
						|
/* >          smallest eigenvalue to be returned. */
 | 
						|
/* >          1 <= IL <= IU <= N, if N > 0. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'V'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IU is INTEGER */
 | 
						|
/* > */
 | 
						|
/* >          If RANGE='I', the index of the */
 | 
						|
/* >          largest eigenvalue to be returned. */
 | 
						|
/* >          1 <= IL <= IU <= N, if N > 0. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'V'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The total number of eigenvalues found.  0 <= M <= N. */
 | 
						|
/* >          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] W */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          W is REAL array, dimension (N) */
 | 
						|
/* >          The first M elements contain the selected eigenvalues in */
 | 
						|
/* >          ascending order. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] Z */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Z is REAL array, dimension (LDZ, f2cmax(1,M) ) */
 | 
						|
/* >          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
 | 
						|
/* >          contain the orthonormal eigenvectors of the matrix T */
 | 
						|
/* >          corresponding to the selected eigenvalues, with the i-th */
 | 
						|
/* >          column of Z holding the eigenvector associated with W(i). */
 | 
						|
/* >          If JOBZ = 'N', then Z is not referenced. */
 | 
						|
/* >          Note: the user must ensure that at least f2cmax(1,M) columns are */
 | 
						|
/* >          supplied in the array Z; if RANGE = 'V', the exact value of M */
 | 
						|
/* >          is not known in advance and can be computed with a workspace */
 | 
						|
/* >          query by setting NZC = -1, see below. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDZ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDZ is INTEGER */
 | 
						|
/* >          The leading dimension of the array Z.  LDZ >= 1, and if */
 | 
						|
/* >          JOBZ = 'V', then LDZ >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NZC */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NZC is INTEGER */
 | 
						|
/* >          The number of eigenvectors to be held in the array Z. */
 | 
						|
/* >          If RANGE = 'A', then NZC >= f2cmax(1,N). */
 | 
						|
/* >          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */
 | 
						|
/* >          If RANGE = 'I', then NZC >= IU-IL+1. */
 | 
						|
/* >          If NZC = -1, then a workspace query is assumed; the */
 | 
						|
/* >          routine calculates the number of columns of the array Z that */
 | 
						|
/* >          are needed to hold the eigenvectors. */
 | 
						|
/* >          This value is returned as the first entry of the Z array, and */
 | 
						|
/* >          no error message related to NZC is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ISUPPZ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
 | 
						|
/* >          The support of the eigenvectors in Z, i.e., the indices */
 | 
						|
/* >          indicating the nonzero elements in Z. The i-th computed eigenvector */
 | 
						|
/* >          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
 | 
						|
/* >          ISUPPZ( 2*i ). This is relevant in the case when the matrix */
 | 
						|
/* >          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] TRYRAC */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TRYRAC is LOGICAL */
 | 
						|
/* >          If TRYRAC = .TRUE., indicates that the code should check whether */
 | 
						|
/* >          the tridiagonal matrix defines its eigenvalues to high relative */
 | 
						|
/* >          accuracy.  If so, the code uses relative-accuracy preserving */
 | 
						|
/* >          algorithms that might be (a bit) slower depending on the matrix. */
 | 
						|
/* >          If the matrix does not define its eigenvalues to high relative */
 | 
						|
/* >          accuracy, the code can uses possibly faster algorithms. */
 | 
						|
/* >          If TRYRAC = .FALSE., the code is not required to guarantee */
 | 
						|
/* >          relatively accurate eigenvalues and can use the fastest possible */
 | 
						|
/* >          techniques. */
 | 
						|
/* >          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */
 | 
						|
/* >          does not define its eigenvalues to high relative accuracy. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is REAL array, dimension (LWORK) */
 | 
						|
/* >          On exit, if INFO = 0, WORK(1) returns the optimal */
 | 
						|
/* >          (and minimal) LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >          The dimension of the array WORK. LWORK >= f2cmax(1,18*N) */
 | 
						|
/* >          if JOBZ = 'V', and LWORK >= f2cmax(1,12*N) if JOBZ = 'N'. */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/* >          only calculates the optimal size of the WORK array, returns */
 | 
						|
/* >          this value as the first entry of the WORK array, and no error */
 | 
						|
/* >          message related to LWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IWORK is INTEGER array, dimension (LIWORK) */
 | 
						|
/* >          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LIWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LIWORK is INTEGER */
 | 
						|
/* >          The dimension of the array IWORK.  LIWORK >= f2cmax(1,10*N) */
 | 
						|
/* >          if the eigenvectors are desired, and LIWORK >= f2cmax(1,8*N) */
 | 
						|
/* >          if only the eigenvalues are to be computed. */
 | 
						|
/* >          If LIWORK = -1, then a workspace query is assumed; the */
 | 
						|
/* >          routine only calculates the optimal size of the IWORK array, */
 | 
						|
/* >          returns this value as the first entry of the IWORK array, and */
 | 
						|
/* >          no error message related to LIWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          On exit, INFO */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          > 0:  if INFO = 1X, internal error in SLARRE, */
 | 
						|
/* >                if INFO = 2X, internal error in SLARRV. */
 | 
						|
/* >                Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
 | 
						|
/* >                the nonzero error code returned by SLARRE or */
 | 
						|
/* >                SLARRV, respectively. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date June 2016 */
 | 
						|
 | 
						|
/* > \ingroup realOTHERcomputational */
 | 
						|
 | 
						|
/* > \par Contributors: */
 | 
						|
/*  ================== */
 | 
						|
/* > */
 | 
						|
/* > Beresford Parlett, University of California, Berkeley, USA \n */
 | 
						|
/* > Jim Demmel, University of California, Berkeley, USA \n */
 | 
						|
/* > Inderjit Dhillon, University of Texas, Austin, USA \n */
 | 
						|
/* > Osni Marques, LBNL/NERSC, USA \n */
 | 
						|
/* > Christof Voemel, University of California, Berkeley, USA */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int sstemr_(char *jobz, char *range, integer *n, real *d__, 
 | 
						|
	real *e, real *vl, real *vu, integer *il, integer *iu, integer *m, 
 | 
						|
	real *w, real *z__, integer *ldz, integer *nzc, integer *isuppz, 
 | 
						|
	logical *tryrac, real *work, integer *lwork, integer *iwork, integer *
 | 
						|
	liwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer z_dim1, z_offset, i__1, i__2;
 | 
						|
    real r__1, r__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer indd, iend, jblk, wend;
 | 
						|
    real rmin, rmax;
 | 
						|
    integer itmp;
 | 
						|
    real tnrm;
 | 
						|
    integer inde2;
 | 
						|
    extern /* Subroutine */ int slae2_(real *, real *, real *, real *, real *)
 | 
						|
	    ;
 | 
						|
    integer itmp2;
 | 
						|
    real rtol1, rtol2;
 | 
						|
    integer i__, j;
 | 
						|
    real scale;
 | 
						|
    integer indgp;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer iinfo;
 | 
						|
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
 | 
						|
    integer iindw, ilast, lwmin;
 | 
						|
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *), sswap_(integer *, real *, integer *, real *, integer *
 | 
						|
	    );
 | 
						|
    logical wantz;
 | 
						|
    real r1, r2;
 | 
						|
    extern /* Subroutine */ int slaev2_(real *, real *, real *, real *, real *
 | 
						|
	    , real *, real *);
 | 
						|
    integer jj;
 | 
						|
    real cs;
 | 
						|
    integer in;
 | 
						|
    logical alleig, indeig;
 | 
						|
    integer ibegin, iindbl;
 | 
						|
    real sn, wl;
 | 
						|
    logical valeig;
 | 
						|
    extern real slamch_(char *);
 | 
						|
    integer wbegin;
 | 
						|
    real safmin, wu;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    real bignum;
 | 
						|
    integer inderr, iindwk, indgrs, offset;
 | 
						|
    extern /* Subroutine */ int slarrc_(char *, integer *, real *, real *, 
 | 
						|
	    real *, real *, real *, integer *, integer *, integer *, integer *
 | 
						|
	    ), slarre_(char *, integer *, real *, real *, integer *, 
 | 
						|
	    integer *, real *, real *, real *, real *, real *, real *, 
 | 
						|
	    integer *, integer *, integer *, real *, real *, real *, integer *
 | 
						|
	    , integer *, real *, real *, real *, integer *, integer *)
 | 
						|
	    ;
 | 
						|
    real thresh;
 | 
						|
    integer iinspl, indwrk, ifirst, liwmin, nzcmin;
 | 
						|
    real pivmin;
 | 
						|
    extern real slanst_(char *, integer *, real *, real *);
 | 
						|
    extern /* Subroutine */ int slarrj_(integer *, real *, real *, integer *, 
 | 
						|
	    integer *, real *, integer *, real *, real *, real *, integer *, 
 | 
						|
	    real *, real *, integer *), slarrr_(integer *, real *, real *, 
 | 
						|
	    integer *);
 | 
						|
    integer nsplit;
 | 
						|
    extern /* Subroutine */ int slarrv_(integer *, real *, real *, real *, 
 | 
						|
	    real *, real *, integer *, integer *, integer *, integer *, real *
 | 
						|
	    , real *, real *, real *, real *, real *, integer *, integer *, 
 | 
						|
	    real *, real *, integer *, integer *, real *, integer *, integer *
 | 
						|
	    );
 | 
						|
    real smlnum;
 | 
						|
    extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *);
 | 
						|
    logical lquery, zquery;
 | 
						|
    integer iil, iiu;
 | 
						|
    real eps, tmp;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.1) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     June 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --d__;
 | 
						|
    --e;
 | 
						|
    --w;
 | 
						|
    z_dim1 = *ldz;
 | 
						|
    z_offset = 1 + z_dim1 * 1;
 | 
						|
    z__ -= z_offset;
 | 
						|
    --isuppz;
 | 
						|
    --work;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    wantz = lsame_(jobz, "V");
 | 
						|
    alleig = lsame_(range, "A");
 | 
						|
    valeig = lsame_(range, "V");
 | 
						|
    indeig = lsame_(range, "I");
 | 
						|
 | 
						|
    lquery = *lwork == -1 || *liwork == -1;
 | 
						|
    zquery = *nzc == -1;
 | 
						|
/*     SSTEMR needs WORK of size 6*N, IWORK of size 3*N. */
 | 
						|
/*     In addition, SLARRE needs WORK of size 6*N, IWORK of size 5*N. */
 | 
						|
/*     Furthermore, SLARRV needs WORK of size 12*N, IWORK of size 7*N. */
 | 
						|
    if (wantz) {
 | 
						|
	lwmin = *n * 18;
 | 
						|
	liwmin = *n * 10;
 | 
						|
    } else {
 | 
						|
/*        need less workspace if only the eigenvalues are wanted */
 | 
						|
	lwmin = *n * 12;
 | 
						|
	liwmin = *n << 3;
 | 
						|
    }
 | 
						|
    wl = 0.f;
 | 
						|
    wu = 0.f;
 | 
						|
    iil = 0;
 | 
						|
    iiu = 0;
 | 
						|
    nsplit = 0;
 | 
						|
    if (valeig) {
 | 
						|
/*        We do not reference VL, VU in the cases RANGE = 'I','A' */
 | 
						|
/*        The interval (WL, WU] contains all the wanted eigenvalues. */
 | 
						|
/*        It is either given by the user or computed in SLARRE. */
 | 
						|
	wl = *vl;
 | 
						|
	wu = *vu;
 | 
						|
    } else if (indeig) {
 | 
						|
/*        We do not reference IL, IU in the cases RANGE = 'V','A' */
 | 
						|
	iil = *il;
 | 
						|
	iiu = *iu;
 | 
						|
    }
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    if (! (wantz || lsame_(jobz, "N"))) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! (alleig || valeig || indeig)) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (valeig && *n > 0 && wu <= wl) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (indeig && (iil < 1 || iil > *n)) {
 | 
						|
	*info = -8;
 | 
						|
    } else if (indeig && (iiu < iil || iiu > *n)) {
 | 
						|
	*info = -9;
 | 
						|
    } else if (*ldz < 1 || wantz && *ldz < *n) {
 | 
						|
	*info = -13;
 | 
						|
    } else if (*lwork < lwmin && ! lquery) {
 | 
						|
	*info = -17;
 | 
						|
    } else if (*liwork < liwmin && ! lquery) {
 | 
						|
	*info = -19;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants. */
 | 
						|
 | 
						|
    safmin = slamch_("Safe minimum");
 | 
						|
    eps = slamch_("Precision");
 | 
						|
    smlnum = safmin / eps;
 | 
						|
    bignum = 1.f / smlnum;
 | 
						|
    rmin = sqrt(smlnum);
 | 
						|
/* Computing MIN */
 | 
						|
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
 | 
						|
    rmax = f2cmin(r__1,r__2);
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
	work[1] = (real) lwmin;
 | 
						|
	iwork[1] = liwmin;
 | 
						|
 | 
						|
	if (wantz && alleig) {
 | 
						|
	    nzcmin = *n;
 | 
						|
	} else if (wantz && valeig) {
 | 
						|
	    slarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
 | 
						|
		    itmp2, info);
 | 
						|
	} else if (wantz && indeig) {
 | 
						|
	    nzcmin = iiu - iil + 1;
 | 
						|
	} else {
 | 
						|
/*           WANTZ .EQ. FALSE. */
 | 
						|
	    nzcmin = 0;
 | 
						|
	}
 | 
						|
	if (zquery && *info == 0) {
 | 
						|
	    z__[z_dim1 + 1] = (real) nzcmin;
 | 
						|
	} else if (*nzc < nzcmin && ! zquery) {
 | 
						|
	    *info = -14;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SSTEMR", &i__1, (ftnlen)6);
 | 
						|
 | 
						|
	return 0;
 | 
						|
    } else if (lquery || zquery) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Handle N = 0, 1, and 2 cases immediately */
 | 
						|
 | 
						|
    *m = 0;
 | 
						|
    if (*n == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*n == 1) {
 | 
						|
	if (alleig || indeig) {
 | 
						|
	    *m = 1;
 | 
						|
	    w[1] = d__[1];
 | 
						|
	} else {
 | 
						|
	    if (wl < d__[1] && wu >= d__[1]) {
 | 
						|
		*m = 1;
 | 
						|
		w[1] = d__[1];
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (wantz && ! zquery) {
 | 
						|
	    z__[z_dim1 + 1] = 1.f;
 | 
						|
	    isuppz[1] = 1;
 | 
						|
	    isuppz[2] = 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*n == 2) {
 | 
						|
	if (! wantz) {
 | 
						|
	    slae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
 | 
						|
	} else if (wantz && ! zquery) {
 | 
						|
	    slaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
 | 
						|
	}
 | 
						|
	if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
 | 
						|
	    ++(*m);
 | 
						|
	    w[*m] = r2;
 | 
						|
	    if (wantz && ! zquery) {
 | 
						|
		z__[*m * z_dim1 + 1] = -sn;
 | 
						|
		z__[*m * z_dim1 + 2] = cs;
 | 
						|
/*              Note: At most one of SN and CS can be zero. */
 | 
						|
		if (sn != 0.f) {
 | 
						|
		    if (cs != 0.f) {
 | 
						|
			isuppz[(*m << 1) - 1] = 1;
 | 
						|
			isuppz[*m * 2] = 2;
 | 
						|
		    } else {
 | 
						|
			isuppz[(*m << 1) - 1] = 1;
 | 
						|
			isuppz[*m * 2] = 1;
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    isuppz[(*m << 1) - 1] = 2;
 | 
						|
		    isuppz[*m * 2] = 2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
 | 
						|
	    ++(*m);
 | 
						|
	    w[*m] = r1;
 | 
						|
	    if (wantz && ! zquery) {
 | 
						|
		z__[*m * z_dim1 + 1] = cs;
 | 
						|
		z__[*m * z_dim1 + 2] = sn;
 | 
						|
/*              Note: At most one of SN and CS can be zero. */
 | 
						|
		if (sn != 0.f) {
 | 
						|
		    if (cs != 0.f) {
 | 
						|
			isuppz[(*m << 1) - 1] = 1;
 | 
						|
			isuppz[*m * 2] = 2;
 | 
						|
		    } else {
 | 
						|
			isuppz[(*m << 1) - 1] = 1;
 | 
						|
			isuppz[*m * 2] = 1;
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    isuppz[(*m << 1) - 1] = 2;
 | 
						|
		    isuppz[*m * 2] = 2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
/*     Continue with general N */
 | 
						|
	indgrs = 1;
 | 
						|
	inderr = (*n << 1) + 1;
 | 
						|
	indgp = *n * 3 + 1;
 | 
						|
	indd = (*n << 2) + 1;
 | 
						|
	inde2 = *n * 5 + 1;
 | 
						|
	indwrk = *n * 6 + 1;
 | 
						|
 | 
						|
	iinspl = 1;
 | 
						|
	iindbl = *n + 1;
 | 
						|
	iindw = (*n << 1) + 1;
 | 
						|
	iindwk = *n * 3 + 1;
 | 
						|
 | 
						|
/*        Scale matrix to allowable range, if necessary. */
 | 
						|
/*        The allowable range is related to the PIVMIN parameter; see the */
 | 
						|
/*        comments in SLARRD.  The preference for scaling small values */
 | 
						|
/*        up is heuristic; we expect users' matrices not to be close to the */
 | 
						|
/*        RMAX threshold. */
 | 
						|
 | 
						|
	scale = 1.f;
 | 
						|
	tnrm = slanst_("M", n, &d__[1], &e[1]);
 | 
						|
	if (tnrm > 0.f && tnrm < rmin) {
 | 
						|
	    scale = rmin / tnrm;
 | 
						|
	} else if (tnrm > rmax) {
 | 
						|
	    scale = rmax / tnrm;
 | 
						|
	}
 | 
						|
	if (scale != 1.f) {
 | 
						|
	    sscal_(n, &scale, &d__[1], &c__1);
 | 
						|
	    i__1 = *n - 1;
 | 
						|
	    sscal_(&i__1, &scale, &e[1], &c__1);
 | 
						|
	    tnrm *= scale;
 | 
						|
	    if (valeig) {
 | 
						|
/*              If eigenvalues in interval have to be found, */
 | 
						|
/*              scale (WL, WU] accordingly */
 | 
						|
		wl *= scale;
 | 
						|
		wu *= scale;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Compute the desired eigenvalues of the tridiagonal after splitting */
 | 
						|
/*        into smaller subblocks if the corresponding off-diagonal elements */
 | 
						|
/*        are small */
 | 
						|
/*        THRESH is the splitting parameter for SLARRE */
 | 
						|
/*        A negative THRESH forces the old splitting criterion based on the */
 | 
						|
/*        size of the off-diagonal. A positive THRESH switches to splitting */
 | 
						|
/*        which preserves relative accuracy. */
 | 
						|
 | 
						|
	if (*tryrac) {
 | 
						|
/*           Test whether the matrix warrants the more expensive relative approach. */
 | 
						|
	    slarrr_(n, &d__[1], &e[1], &iinfo);
 | 
						|
	} else {
 | 
						|
/*           The user does not care about relative accurately eigenvalues */
 | 
						|
	    iinfo = -1;
 | 
						|
	}
 | 
						|
/*        Set the splitting criterion */
 | 
						|
	if (iinfo == 0) {
 | 
						|
	    thresh = eps;
 | 
						|
	} else {
 | 
						|
	    thresh = -eps;
 | 
						|
/*           relative accuracy is desired but T does not guarantee it */
 | 
						|
	    *tryrac = FALSE_;
 | 
						|
	}
 | 
						|
 | 
						|
	if (*tryrac) {
 | 
						|
/*           Copy original diagonal, needed to guarantee relative accuracy */
 | 
						|
	    scopy_(n, &d__[1], &c__1, &work[indd], &c__1);
 | 
						|
	}
 | 
						|
/*        Store the squares of the offdiagonal values of T */
 | 
						|
	i__1 = *n - 1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
/* Computing 2nd power */
 | 
						|
	    r__1 = e[j];
 | 
						|
	    work[inde2 + j - 1] = r__1 * r__1;
 | 
						|
/* L5: */
 | 
						|
	}
 | 
						|
/*        Set the tolerance parameters for bisection */
 | 
						|
	if (! wantz) {
 | 
						|
/*           SLARRE computes the eigenvalues to full precision. */
 | 
						|
	    rtol1 = eps * 4.f;
 | 
						|
	    rtol2 = eps * 4.f;
 | 
						|
	} else {
 | 
						|
/*           SLARRE computes the eigenvalues to less than full precision. */
 | 
						|
/*           SLARRV will refine the eigenvalue approximations, and we can */
 | 
						|
/*           need less accurate initial bisection in SLARRE. */
 | 
						|
/*           Note: these settings do only affect the subset case and SLARRE */
 | 
						|
/* Computing MAX */
 | 
						|
	    r__1 = sqrt(eps) * .05f, r__2 = eps * 4.f;
 | 
						|
	    rtol1 = f2cmax(r__1,r__2);
 | 
						|
/* Computing MAX */
 | 
						|
	    r__1 = sqrt(eps) * .005f, r__2 = eps * 4.f;
 | 
						|
	    rtol2 = f2cmax(r__1,r__2);
 | 
						|
	}
 | 
						|
	slarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2], 
 | 
						|
		&rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &
 | 
						|
		work[inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &
 | 
						|
		work[indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = abs(iinfo) + 10;
 | 
						|
	    return 0;
 | 
						|
	}
 | 
						|
/*        Note that if RANGE .NE. 'V', SLARRE computes bounds on the desired */
 | 
						|
/*        part of the spectrum. All desired eigenvalues are contained in */
 | 
						|
/*        (WL,WU] */
 | 
						|
	if (wantz) {
 | 
						|
 | 
						|
/*           Compute the desired eigenvectors corresponding to the computed */
 | 
						|
/*           eigenvalues */
 | 
						|
 | 
						|
	    slarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
 | 
						|
		    c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &
 | 
						|
		    work[indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs],
 | 
						|
		     &z__[z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[
 | 
						|
		    iindwk], &iinfo);
 | 
						|
	    if (iinfo != 0) {
 | 
						|
		*info = abs(iinfo) + 20;
 | 
						|
		return 0;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
/*           SLARRE computes eigenvalues of the (shifted) root representation */
 | 
						|
/*           SLARRV returns the eigenvalues of the unshifted matrix. */
 | 
						|
/*           However, if the eigenvectors are not desired by the user, we need */
 | 
						|
/*           to apply the corresponding shifts from SLARRE to obtain the */
 | 
						|
/*           eigenvalues of the original matrix. */
 | 
						|
	    i__1 = *m;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		itmp = iwork[iindbl + j - 1];
 | 
						|
		w[j] += e[iwork[iinspl + itmp - 1]];
 | 
						|
/* L20: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	if (*tryrac) {
 | 
						|
/*           Refine computed eigenvalues so that they are relatively accurate */
 | 
						|
/*           with respect to the original matrix T. */
 | 
						|
	    ibegin = 1;
 | 
						|
	    wbegin = 1;
 | 
						|
	    i__1 = iwork[iindbl + *m - 1];
 | 
						|
	    for (jblk = 1; jblk <= i__1; ++jblk) {
 | 
						|
		iend = iwork[iinspl + jblk - 1];
 | 
						|
		in = iend - ibegin + 1;
 | 
						|
		wend = wbegin - 1;
 | 
						|
/*              check if any eigenvalues have to be refined in this block */
 | 
						|
L36:
 | 
						|
		if (wend < *m) {
 | 
						|
		    if (iwork[iindbl + wend] == jblk) {
 | 
						|
			++wend;
 | 
						|
			goto L36;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		if (wend < wbegin) {
 | 
						|
		    ibegin = iend + 1;
 | 
						|
		    goto L39;
 | 
						|
		}
 | 
						|
		offset = iwork[iindw + wbegin - 1] - 1;
 | 
						|
		ifirst = iwork[iindw + wbegin - 1];
 | 
						|
		ilast = iwork[iindw + wend - 1];
 | 
						|
		rtol2 = eps * 4.f;
 | 
						|
		slarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin - 
 | 
						|
			1], &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &
 | 
						|
			work[inderr + wbegin - 1], &work[indwrk], &iwork[
 | 
						|
			iindwk], &pivmin, &tnrm, &iinfo);
 | 
						|
		ibegin = iend + 1;
 | 
						|
		wbegin = wend + 1;
 | 
						|
L39:
 | 
						|
		;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        If matrix was scaled, then rescale eigenvalues appropriately. */
 | 
						|
 | 
						|
	if (scale != 1.f) {
 | 
						|
	    r__1 = 1.f / scale;
 | 
						|
	    sscal_(m, &r__1, &w[1], &c__1);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     If eigenvalues are not in increasing order, then sort them, */
 | 
						|
/*     possibly along with eigenvectors. */
 | 
						|
 | 
						|
    if (nsplit > 1 || *n == 2) {
 | 
						|
	if (! wantz) {
 | 
						|
	    slasrt_("I", m, &w[1], &iinfo);
 | 
						|
	    if (iinfo != 0) {
 | 
						|
		*info = 3;
 | 
						|
		return 0;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    i__1 = *m - 1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__ = 0;
 | 
						|
		tmp = w[j];
 | 
						|
		i__2 = *m;
 | 
						|
		for (jj = j + 1; jj <= i__2; ++jj) {
 | 
						|
		    if (w[jj] < tmp) {
 | 
						|
			i__ = jj;
 | 
						|
			tmp = w[jj];
 | 
						|
		    }
 | 
						|
/* L50: */
 | 
						|
		}
 | 
						|
		if (i__ != 0) {
 | 
						|
		    w[i__] = w[j];
 | 
						|
		    w[j] = tmp;
 | 
						|
		    if (wantz) {
 | 
						|
			sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * 
 | 
						|
				z_dim1 + 1], &c__1);
 | 
						|
			itmp = isuppz[(i__ << 1) - 1];
 | 
						|
			isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
 | 
						|
			isuppz[(j << 1) - 1] = itmp;
 | 
						|
			itmp = isuppz[i__ * 2];
 | 
						|
			isuppz[i__ * 2] = isuppz[j * 2];
 | 
						|
			isuppz[j * 2] = itmp;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
/* L60: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    work[1] = (real) lwmin;
 | 
						|
    iwork[1] = liwmin;
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SSTEMR */
 | 
						|
 | 
						|
} /* sstemr_ */
 | 
						|
 |