338 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			338 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> SSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SSPEVD + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspevd.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspevd.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspevd.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
 | 
						|
*                          IWORK, LIWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, UPLO
 | 
						|
*       INTEGER            INFO, LDZ, LIWORK, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       REAL               AP( * ), W( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SSPEVD computes all the eigenvalues and, optionally, eigenvectors
 | 
						|
*> of a real symmetric matrix A in packed storage. If eigenvectors are
 | 
						|
*> desired, it uses a divide and conquer algorithm.
 | 
						|
*>
 | 
						|
*> The divide and conquer algorithm makes very mild assumptions about
 | 
						|
*> floating point arithmetic. It will work on machines with a guard
 | 
						|
*> digit in add/subtract, or on those binary machines without guard
 | 
						|
*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 | 
						|
*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
 | 
						|
*> without guard digits, but we know of none.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is REAL array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric matrix
 | 
						|
*>          A, packed columnwise in a linear array.  The j-th column of A
 | 
						|
*>          is stored in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*>
 | 
						|
*>          On exit, AP is overwritten by values generated during the
 | 
						|
*>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
 | 
						|
*>          and first superdiagonal of the tridiagonal matrix T overwrite
 | 
						|
*>          the corresponding elements of A, and if UPLO = 'L', the
 | 
						|
*>          diagonal and first subdiagonal of T overwrite the
 | 
						|
*>          corresponding elements of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is REAL array, dimension (N)
 | 
						|
*>          If INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension (LDZ, N)
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
 | 
						|
*>          eigenvectors of the matrix A, with the i-th column of Z
 | 
						|
*>          holding the eigenvector associated with W(i).
 | 
						|
*>          If JOBZ = 'N', then Z is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          JOBZ = 'V', LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the required LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          If N <= 1,               LWORK must be at least 1.
 | 
						|
*>          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
 | 
						|
*>          If JOBZ = 'V' and N > 1, LWORK must be at least
 | 
						|
*>                                                 1 + 6*N + N**2.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the required sizes of the WORK and IWORK
 | 
						|
*>          arrays, returns these values as the first entries of the WORK
 | 
						|
*>          and IWORK arrays, and no error message related to LWORK or
 | 
						|
*>          LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | 
						|
*>          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LIWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LIWORK is INTEGER
 | 
						|
*>          The dimension of the array IWORK.
 | 
						|
*>          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
 | 
						|
*>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
 | 
						|
*>
 | 
						|
*>          If LIWORK = -1, then a workspace query is assumed; the
 | 
						|
*>          routine only calculates the required sizes of the WORK and
 | 
						|
*>          IWORK arrays, returns these values as the first entries of
 | 
						|
*>          the WORK and IWORK arrays, and no error message related to
 | 
						|
*>          LWORK or LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  if INFO = i, the algorithm failed to converge; i
 | 
						|
*>                off-diagonal elements of an intermediate tridiagonal
 | 
						|
*>                form did not converge to zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup realOTHEReigen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
 | 
						|
     $                   IWORK, LIWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, UPLO
 | 
						|
      INTEGER            INFO, LDZ, LIWORK, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      REAL               AP( * ), W( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, WANTZ
 | 
						|
      INTEGER            IINFO, INDE, INDTAU, INDWRK, ISCALE, LIWMIN,
 | 
						|
     $                   LLWORK, LWMIN
 | 
						|
      REAL               ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
 | 
						|
     $                   SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SLAMCH, SLANSP
 | 
						|
      EXTERNAL           LSAME, SLAMCH, SLANSP
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SOPMTR, SSCAL, SSPTRD, SSTEDC, SSTERF, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
 | 
						|
     $          THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( N.LE.1 ) THEN
 | 
						|
            LIWMIN = 1
 | 
						|
            LWMIN = 1
 | 
						|
         ELSE
 | 
						|
            IF( WANTZ ) THEN
 | 
						|
               LIWMIN = 3 + 5*N
 | 
						|
               LWMIN = 1 + 6*N + N**2
 | 
						|
            ELSE
 | 
						|
               LIWMIN = 1
 | 
						|
               LWMIN = 2*N
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         IWORK( 1 ) = LIWMIN
 | 
						|
         WORK( 1 ) = LWMIN
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -9
 | 
						|
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -11
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SSPEVD', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         W( 1 ) = AP( 1 )
 | 
						|
         IF( WANTZ )
 | 
						|
     $      Z( 1, 1 ) = ONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine constants.
 | 
						|
*
 | 
						|
      SAFMIN = SLAMCH( 'Safe minimum' )
 | 
						|
      EPS = SLAMCH( 'Precision' )
 | 
						|
      SMLNUM = SAFMIN / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      RMIN = SQRT( SMLNUM )
 | 
						|
      RMAX = SQRT( BIGNUM )
 | 
						|
*
 | 
						|
*     Scale matrix to allowable range, if necessary.
 | 
						|
*
 | 
						|
      ANRM = SLANSP( 'M', UPLO, N, AP, WORK )
 | 
						|
      ISCALE = 0
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         SIGMA = RMIN / ANRM
 | 
						|
      ELSE IF( ANRM.GT.RMAX ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         SIGMA = RMAX / ANRM
 | 
						|
      END IF
 | 
						|
      IF( ISCALE.EQ.1 ) THEN
 | 
						|
         CALL SSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
 | 
						|
*
 | 
						|
      INDE = 1
 | 
						|
      INDTAU = INDE + N
 | 
						|
      CALL SSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
 | 
						|
*
 | 
						|
*     For eigenvalues only, call SSTERF.  For eigenvectors, first call
 | 
						|
*     SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
 | 
						|
*     tridiagonal matrix, then call SOPMTR to multiply it by the
 | 
						|
*     Householder transformations represented in AP.
 | 
						|
*
 | 
						|
      IF( .NOT.WANTZ ) THEN
 | 
						|
         CALL SSTERF( N, W, WORK( INDE ), INFO )
 | 
						|
      ELSE
 | 
						|
         INDWRK = INDTAU + N
 | 
						|
         LLWORK = LWORK - INDWRK + 1
 | 
						|
         CALL SSTEDC( 'I', N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
 | 
						|
     $                LLWORK, IWORK, LIWORK, INFO )
 | 
						|
         CALL SOPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
 | 
						|
     $                WORK( INDWRK ), IINFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If matrix was scaled, then rescale eigenvalues appropriately.
 | 
						|
*
 | 
						|
      IF( ISCALE.EQ.1 )
 | 
						|
     $   CALL SSCAL( N, ONE / SIGMA, W, 1 )
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
      IWORK( 1 ) = LIWMIN
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSPEVD
 | 
						|
*
 | 
						|
      END
 |