1503 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1503 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* > \brief \b SLAED4 used by sstedc. Finds a single root of the secular equation. */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SLAED4 + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed4.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed4.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed4.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO ) */
 | 
						|
 | 
						|
/*       INTEGER            I, INFO, N */
 | 
						|
/*       REAL               DLAM, RHO */
 | 
						|
/*       REAL               D( * ), DELTA( * ), Z( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > This subroutine computes the I-th updated eigenvalue of a symmetric */
 | 
						|
/* > rank-one modification to a diagonal matrix whose elements are */
 | 
						|
/* > given in the array d, and that */
 | 
						|
/* > */
 | 
						|
/* >            D(i) < D(j)  for  i < j */
 | 
						|
/* > */
 | 
						|
/* > and that RHO > 0.  This is arranged by the calling routine, and is */
 | 
						|
/* > no loss in generality.  The rank-one modified system is thus */
 | 
						|
/* > */
 | 
						|
/* >            diag( D )  +  RHO * Z * Z_transpose. */
 | 
						|
/* > */
 | 
						|
/* > where we assume the Euclidean norm of Z is 1. */
 | 
						|
/* > */
 | 
						|
/* > The method consists of approximating the rational functions in the */
 | 
						|
/* > secular equation by simpler interpolating rational functions. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >         The length of all arrays. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] I */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          I is INTEGER */
 | 
						|
/* >         The index of the eigenvalue to be computed.  1 <= I <= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] D */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D is REAL array, dimension (N) */
 | 
						|
/* >         The original eigenvalues.  It is assumed that they are in */
 | 
						|
/* >         order, D(I) < D(J)  for I < J. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] Z */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Z is REAL array, dimension (N) */
 | 
						|
/* >         The components of the updating vector. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] DELTA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DELTA is REAL array, dimension (N) */
 | 
						|
/* >         If N > 2, DELTA contains (D(j) - lambda_I) in its  j-th */
 | 
						|
/* >         component.  If N = 1, then DELTA(1) = 1. If N = 2, see SLAED5 */
 | 
						|
/* >         for detail. The vector DELTA contains the information necessary */
 | 
						|
/* >         to construct the eigenvectors by SLAED3 and SLAED9. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] RHO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RHO is REAL */
 | 
						|
/* >         The scalar in the symmetric updating formula. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] DLAM */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DLAM is REAL */
 | 
						|
/* >         The computed lambda_I, the I-th updated eigenvalue. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >         = 0:  successful exit */
 | 
						|
/* >         > 0:  if INFO = 1, the updating process failed. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/* > \par Internal Parameters: */
 | 
						|
/*  ========================= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* >  Logical variable ORGATI (origin-at-i?) is used for distinguishing */
 | 
						|
/* >  whether D(i) or D(i+1) is treated as the origin. */
 | 
						|
/* > */
 | 
						|
/* >            ORGATI = .true.    origin at i */
 | 
						|
/* >            ORGATI = .false.   origin at i+1 */
 | 
						|
/* > */
 | 
						|
/* >   Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
 | 
						|
/* >   if we are working with THREE poles! */
 | 
						|
/* > */
 | 
						|
/* >   MAXIT is the maximum number of iterations allowed for each */
 | 
						|
/* >   eigenvalue. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup auxOTHERcomputational */
 | 
						|
 | 
						|
/* > \par Contributors: */
 | 
						|
/*  ================== */
 | 
						|
/* > */
 | 
						|
/* >     Ren-Cang Li, Computer Science Division, University of California */
 | 
						|
/* >     at Berkeley, USA */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int slaed4_(integer *n, integer *i__, real *d__, real *z__, 
 | 
						|
	real *delta, real *rho, real *dlam, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer i__1;
 | 
						|
    real r__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real dphi, dpsi;
 | 
						|
    integer iter;
 | 
						|
    real temp, prew, temp1, a, b, c__;
 | 
						|
    integer j;
 | 
						|
    real w, dltlb, dltub, midpt;
 | 
						|
    integer niter;
 | 
						|
    logical swtch;
 | 
						|
    extern /* Subroutine */ int slaed5_(integer *, real *, real *, real *, 
 | 
						|
	    real *, real *), slaed6_(integer *, logical *, real *, real *, 
 | 
						|
	    real *, real *, real *, integer *);
 | 
						|
    logical swtch3;
 | 
						|
    integer ii;
 | 
						|
    real dw;
 | 
						|
    extern real slamch_(char *);
 | 
						|
    real zz[3];
 | 
						|
    logical orgati;
 | 
						|
    real erretm, rhoinv;
 | 
						|
    integer ip1;
 | 
						|
    real del, eta, phi, eps, tau, psi;
 | 
						|
    integer iim1, iip1;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Since this routine is called in an inner loop, we do no argument */
 | 
						|
/*     checking. */
 | 
						|
 | 
						|
/*     Quick return for N=1 and 2. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --delta;
 | 
						|
    --z__;
 | 
						|
    --d__;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    if (*n == 1) {
 | 
						|
 | 
						|
/*         Presumably, I=1 upon entry */
 | 
						|
 | 
						|
	*dlam = d__[1] + *rho * z__[1] * z__[1];
 | 
						|
	delta[1] = 1.f;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
    if (*n == 2) {
 | 
						|
	slaed5_(i__, &d__[1], &z__[1], &delta[1], rho, dlam);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute machine epsilon */
 | 
						|
 | 
						|
    eps = slamch_("Epsilon");
 | 
						|
    rhoinv = 1.f / *rho;
 | 
						|
 | 
						|
/*     The case I = N */
 | 
						|
 | 
						|
    if (*i__ == *n) {
 | 
						|
 | 
						|
/*        Initialize some basic variables */
 | 
						|
 | 
						|
	ii = *n - 1;
 | 
						|
	niter = 1;
 | 
						|
 | 
						|
/*        Calculate initial guess */
 | 
						|
 | 
						|
	midpt = *rho / 2.f;
 | 
						|
 | 
						|
/*        If ||Z||_2 is not one, then TEMP should be set to */
 | 
						|
/*        RHO * ||Z||_2^2 / TWO */
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] = d__[j] - d__[*i__] - midpt;
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
 | 
						|
	psi = 0.f;
 | 
						|
	i__1 = *n - 2;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    psi += z__[j] * z__[j] / delta[j];
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
 | 
						|
	c__ = rhoinv + psi;
 | 
						|
	w = c__ + z__[ii] * z__[ii] / delta[ii] + z__[*n] * z__[*n] / delta[*
 | 
						|
		n];
 | 
						|
 | 
						|
	if (w <= 0.f) {
 | 
						|
	    temp = z__[*n - 1] * z__[*n - 1] / (d__[*n] - d__[*n - 1] + *rho) 
 | 
						|
		    + z__[*n] * z__[*n] / *rho;
 | 
						|
	    if (c__ <= temp) {
 | 
						|
		tau = *rho;
 | 
						|
	    } else {
 | 
						|
		del = d__[*n] - d__[*n - 1];
 | 
						|
		a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]
 | 
						|
			;
 | 
						|
		b = z__[*n] * z__[*n] * del;
 | 
						|
		if (a < 0.f) {
 | 
						|
		    tau = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
 | 
						|
		} else {
 | 
						|
		    tau = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           It can be proved that */
 | 
						|
/*               D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO */
 | 
						|
 | 
						|
	    dltlb = midpt;
 | 
						|
	    dltub = *rho;
 | 
						|
	} else {
 | 
						|
	    del = d__[*n] - d__[*n - 1];
 | 
						|
	    a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
 | 
						|
	    b = z__[*n] * z__[*n] * del;
 | 
						|
	    if (a < 0.f) {
 | 
						|
		tau = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
 | 
						|
	    } else {
 | 
						|
		tau = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           It can be proved that */
 | 
						|
/*               D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2 */
 | 
						|
 | 
						|
	    dltlb = 0.f;
 | 
						|
	    dltub = midpt;
 | 
						|
	}
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] = d__[j] - d__[*i__] - tau;
 | 
						|
/* L30: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.f;
 | 
						|
	psi = 0.f;
 | 
						|
	erretm = 0.f;
 | 
						|
	i__1 = ii;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
	erretm = abs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	temp = z__[*n] / delta[*n];
 | 
						|
	phi = z__[*n] * temp;
 | 
						|
	dphi = temp * temp;
 | 
						|
	erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + abs(tau) * (
 | 
						|
		dpsi + dphi);
 | 
						|
 | 
						|
	w = rhoinv + phi + psi;
 | 
						|
 | 
						|
/*        Test for convergence */
 | 
						|
 | 
						|
	if (abs(w) <= eps * erretm) {
 | 
						|
	    *dlam = d__[*i__] + tau;
 | 
						|
	    goto L250;
 | 
						|
	}
 | 
						|
 | 
						|
	if (w <= 0.f) {
 | 
						|
	    dltlb = f2cmax(dltlb,tau);
 | 
						|
	} else {
 | 
						|
	    dltub = f2cmin(dltub,tau);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Calculate the new step */
 | 
						|
 | 
						|
	++niter;
 | 
						|
	c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
 | 
						|
	a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * (
 | 
						|
		dpsi + dphi);
 | 
						|
	b = delta[*n - 1] * delta[*n] * w;
 | 
						|
	if (c__ < 0.f) {
 | 
						|
	    c__ = abs(c__);
 | 
						|
	}
 | 
						|
	if (c__ == 0.f) {
 | 
						|
/*          ETA = B/A */
 | 
						|
/*           ETA = RHO - TAU */
 | 
						|
	    eta = dltub - tau;
 | 
						|
	} else if (a >= 0.f) {
 | 
						|
	    eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / (
 | 
						|
		    c__ * 2.f);
 | 
						|
	} else {
 | 
						|
	    eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)
 | 
						|
		    )));
 | 
						|
	}
 | 
						|
 | 
						|
/*        Note, eta should be positive if w is negative, and */
 | 
						|
/*        eta should be negative otherwise. However, */
 | 
						|
/*        if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*        we simply use one Newton step instead. This way */
 | 
						|
/*        will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	if (w * eta > 0.f) {
 | 
						|
	    eta = -w / (dpsi + dphi);
 | 
						|
	}
 | 
						|
	temp = tau + eta;
 | 
						|
	if (temp > dltub || temp < dltlb) {
 | 
						|
	    if (w < 0.f) {
 | 
						|
		eta = (dltub - tau) / 2.f;
 | 
						|
	    } else {
 | 
						|
		eta = (dltlb - tau) / 2.f;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] -= eta;
 | 
						|
/* L50: */
 | 
						|
	}
 | 
						|
 | 
						|
	tau += eta;
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.f;
 | 
						|
	psi = 0.f;
 | 
						|
	erretm = 0.f;
 | 
						|
	i__1 = ii;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L60: */
 | 
						|
	}
 | 
						|
	erretm = abs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	temp = z__[*n] / delta[*n];
 | 
						|
	phi = z__[*n] * temp;
 | 
						|
	dphi = temp * temp;
 | 
						|
	erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + abs(tau) * (
 | 
						|
		dpsi + dphi);
 | 
						|
 | 
						|
	w = rhoinv + phi + psi;
 | 
						|
 | 
						|
/*        Main loop to update the values of the array   DELTA */
 | 
						|
 | 
						|
	iter = niter + 1;
 | 
						|
 | 
						|
	for (niter = iter; niter <= 30; ++niter) {
 | 
						|
 | 
						|
/*           Test for convergence */
 | 
						|
 | 
						|
	    if (abs(w) <= eps * erretm) {
 | 
						|
		*dlam = d__[*i__] + tau;
 | 
						|
		goto L250;
 | 
						|
	    }
 | 
						|
 | 
						|
	    if (w <= 0.f) {
 | 
						|
		dltlb = f2cmax(dltlb,tau);
 | 
						|
	    } else {
 | 
						|
		dltub = f2cmin(dltub,tau);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Calculate the new step */
 | 
						|
 | 
						|
	    c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
 | 
						|
	    a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * 
 | 
						|
		    (dpsi + dphi);
 | 
						|
	    b = delta[*n - 1] * delta[*n] * w;
 | 
						|
	    if (a >= 0.f) {
 | 
						|
		eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / 
 | 
						|
			(c__ * 2.f);
 | 
						|
	    } else {
 | 
						|
		eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(
 | 
						|
			r__1))));
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Note, eta should be positive if w is negative, and */
 | 
						|
/*           eta should be negative otherwise. However, */
 | 
						|
/*           if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*           we simply use one Newton step instead. This way */
 | 
						|
/*           will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	    if (w * eta > 0.f) {
 | 
						|
		eta = -w / (dpsi + dphi);
 | 
						|
	    }
 | 
						|
	    temp = tau + eta;
 | 
						|
	    if (temp > dltub || temp < dltlb) {
 | 
						|
		if (w < 0.f) {
 | 
						|
		    eta = (dltub - tau) / 2.f;
 | 
						|
		} else {
 | 
						|
		    eta = (dltlb - tau) / 2.f;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		delta[j] -= eta;
 | 
						|
/* L70: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    tau += eta;
 | 
						|
 | 
						|
/*           Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	    dpsi = 0.f;
 | 
						|
	    psi = 0.f;
 | 
						|
	    erretm = 0.f;
 | 
						|
	    i__1 = ii;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		temp = z__[j] / delta[j];
 | 
						|
		psi += z__[j] * temp;
 | 
						|
		dpsi += temp * temp;
 | 
						|
		erretm += psi;
 | 
						|
/* L80: */
 | 
						|
	    }
 | 
						|
	    erretm = abs(erretm);
 | 
						|
 | 
						|
/*           Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	    temp = z__[*n] / delta[*n];
 | 
						|
	    phi = z__[*n] * temp;
 | 
						|
	    dphi = temp * temp;
 | 
						|
	    erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + abs(tau) * (
 | 
						|
		    dpsi + dphi);
 | 
						|
 | 
						|
	    w = rhoinv + phi + psi;
 | 
						|
/* L90: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Return with INFO = 1, NITER = MAXIT and not converged */
 | 
						|
 | 
						|
	*info = 1;
 | 
						|
	*dlam = d__[*i__] + tau;
 | 
						|
	goto L250;
 | 
						|
 | 
						|
/*        End for the case I = N */
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        The case for I < N */
 | 
						|
 | 
						|
	niter = 1;
 | 
						|
	ip1 = *i__ + 1;
 | 
						|
 | 
						|
/*        Calculate initial guess */
 | 
						|
 | 
						|
	del = d__[ip1] - d__[*i__];
 | 
						|
	midpt = del / 2.f;
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] = d__[j] - d__[*i__] - midpt;
 | 
						|
/* L100: */
 | 
						|
	}
 | 
						|
 | 
						|
	psi = 0.f;
 | 
						|
	i__1 = *i__ - 1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    psi += z__[j] * z__[j] / delta[j];
 | 
						|
/* L110: */
 | 
						|
	}
 | 
						|
 | 
						|
	phi = 0.f;
 | 
						|
	i__1 = *i__ + 2;
 | 
						|
	for (j = *n; j >= i__1; --j) {
 | 
						|
	    phi += z__[j] * z__[j] / delta[j];
 | 
						|
/* L120: */
 | 
						|
	}
 | 
						|
	c__ = rhoinv + psi + phi;
 | 
						|
	w = c__ + z__[*i__] * z__[*i__] / delta[*i__] + z__[ip1] * z__[ip1] / 
 | 
						|
		delta[ip1];
 | 
						|
 | 
						|
	if (w > 0.f) {
 | 
						|
 | 
						|
/*           d(i)< the ith eigenvalue < (d(i)+d(i+1))/2 */
 | 
						|
 | 
						|
/*           We choose d(i) as origin. */
 | 
						|
 | 
						|
	    orgati = TRUE_;
 | 
						|
	    a = c__ * del + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
 | 
						|
	    b = z__[*i__] * z__[*i__] * del;
 | 
						|
	    if (a > 0.f) {
 | 
						|
		tau = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(
 | 
						|
			r__1))));
 | 
						|
	    } else {
 | 
						|
		tau = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / 
 | 
						|
			(c__ * 2.f);
 | 
						|
	    }
 | 
						|
	    dltlb = 0.f;
 | 
						|
	    dltub = midpt;
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1) */
 | 
						|
 | 
						|
/*           We choose d(i+1) as origin. */
 | 
						|
 | 
						|
	    orgati = FALSE_;
 | 
						|
	    a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
 | 
						|
	    b = z__[ip1] * z__[ip1] * del;
 | 
						|
	    if (a < 0.f) {
 | 
						|
		tau = b * 2.f / (a - sqrt((r__1 = a * a + b * 4.f * c__, abs(
 | 
						|
			r__1))));
 | 
						|
	    } else {
 | 
						|
		tau = -(a + sqrt((r__1 = a * a + b * 4.f * c__, abs(r__1)))) /
 | 
						|
			 (c__ * 2.f);
 | 
						|
	    }
 | 
						|
	    dltlb = -midpt;
 | 
						|
	    dltub = 0.f;
 | 
						|
	}
 | 
						|
 | 
						|
	if (orgati) {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		delta[j] = d__[j] - d__[*i__] - tau;
 | 
						|
/* L130: */
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		delta[j] = d__[j] - d__[ip1] - tau;
 | 
						|
/* L140: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (orgati) {
 | 
						|
	    ii = *i__;
 | 
						|
	} else {
 | 
						|
	    ii = *i__ + 1;
 | 
						|
	}
 | 
						|
	iim1 = ii - 1;
 | 
						|
	iip1 = ii + 1;
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.f;
 | 
						|
	psi = 0.f;
 | 
						|
	erretm = 0.f;
 | 
						|
	i__1 = iim1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L150: */
 | 
						|
	}
 | 
						|
	erretm = abs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	dphi = 0.f;
 | 
						|
	phi = 0.f;
 | 
						|
	i__1 = iip1;
 | 
						|
	for (j = *n; j >= i__1; --j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    phi += z__[j] * temp;
 | 
						|
	    dphi += temp * temp;
 | 
						|
	    erretm += phi;
 | 
						|
/* L160: */
 | 
						|
	}
 | 
						|
 | 
						|
	w = rhoinv + phi + psi;
 | 
						|
 | 
						|
/*        W is the value of the secular function with */
 | 
						|
/*        its ii-th element removed. */
 | 
						|
 | 
						|
	swtch3 = FALSE_;
 | 
						|
	if (orgati) {
 | 
						|
	    if (w < 0.f) {
 | 
						|
		swtch3 = TRUE_;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    if (w > 0.f) {
 | 
						|
		swtch3 = TRUE_;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (ii == 1 || ii == *n) {
 | 
						|
	    swtch3 = FALSE_;
 | 
						|
	}
 | 
						|
 | 
						|
	temp = z__[ii] / delta[ii];
 | 
						|
	dw = dpsi + dphi + temp * temp;
 | 
						|
	temp = z__[ii] * temp;
 | 
						|
	w += temp;
 | 
						|
	erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) * 3.f 
 | 
						|
		+ abs(tau) * dw;
 | 
						|
 | 
						|
/*        Test for convergence */
 | 
						|
 | 
						|
	if (abs(w) <= eps * erretm) {
 | 
						|
	    if (orgati) {
 | 
						|
		*dlam = d__[*i__] + tau;
 | 
						|
	    } else {
 | 
						|
		*dlam = d__[ip1] + tau;
 | 
						|
	    }
 | 
						|
	    goto L250;
 | 
						|
	}
 | 
						|
 | 
						|
	if (w <= 0.f) {
 | 
						|
	    dltlb = f2cmax(dltlb,tau);
 | 
						|
	} else {
 | 
						|
	    dltub = f2cmin(dltub,tau);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Calculate the new step */
 | 
						|
 | 
						|
	++niter;
 | 
						|
	if (! swtch3) {
 | 
						|
	    if (orgati) {
 | 
						|
/* Computing 2nd power */
 | 
						|
		r__1 = z__[*i__] / delta[*i__];
 | 
						|
		c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (r__1 * 
 | 
						|
			r__1);
 | 
						|
	    } else {
 | 
						|
/* Computing 2nd power */
 | 
						|
		r__1 = z__[ip1] / delta[ip1];
 | 
						|
		c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (r__1 * 
 | 
						|
			r__1);
 | 
						|
	    }
 | 
						|
	    a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] * 
 | 
						|
		    dw;
 | 
						|
	    b = delta[*i__] * delta[ip1] * w;
 | 
						|
	    if (c__ == 0.f) {
 | 
						|
		if (a == 0.f) {
 | 
						|
		    if (orgati) {
 | 
						|
			a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] * 
 | 
						|
				(dpsi + dphi);
 | 
						|
		    } else {
 | 
						|
			a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] * 
 | 
						|
				(dpsi + dphi);
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		eta = b / a;
 | 
						|
	    } else if (a <= 0.f) {
 | 
						|
		eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / 
 | 
						|
			(c__ * 2.f);
 | 
						|
	    } else {
 | 
						|
		eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(
 | 
						|
			r__1))));
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Interpolation using THREE most relevant poles */
 | 
						|
 | 
						|
	    temp = rhoinv + psi + phi;
 | 
						|
	    if (orgati) {
 | 
						|
		temp1 = z__[iim1] / delta[iim1];
 | 
						|
		temp1 *= temp1;
 | 
						|
		c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[
 | 
						|
			iip1]) * temp1;
 | 
						|
		zz[0] = z__[iim1] * z__[iim1];
 | 
						|
		zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi);
 | 
						|
	    } else {
 | 
						|
		temp1 = z__[iip1] / delta[iip1];
 | 
						|
		temp1 *= temp1;
 | 
						|
		c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[
 | 
						|
			iim1]) * temp1;
 | 
						|
		zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1));
 | 
						|
		zz[2] = z__[iip1] * z__[iip1];
 | 
						|
	    }
 | 
						|
	    zz[1] = z__[ii] * z__[ii];
 | 
						|
	    slaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info);
 | 
						|
	    if (*info != 0) {
 | 
						|
		goto L250;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Note, eta should be positive if w is negative, and */
 | 
						|
/*        eta should be negative otherwise. However, */
 | 
						|
/*        if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*        we simply use one Newton step instead. This way */
 | 
						|
/*        will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	if (w * eta >= 0.f) {
 | 
						|
	    eta = -w / dw;
 | 
						|
	}
 | 
						|
	temp = tau + eta;
 | 
						|
	if (temp > dltub || temp < dltlb) {
 | 
						|
	    if (w < 0.f) {
 | 
						|
		eta = (dltub - tau) / 2.f;
 | 
						|
	    } else {
 | 
						|
		eta = (dltlb - tau) / 2.f;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	prew = w;
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] -= eta;
 | 
						|
/* L180: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.f;
 | 
						|
	psi = 0.f;
 | 
						|
	erretm = 0.f;
 | 
						|
	i__1 = iim1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L190: */
 | 
						|
	}
 | 
						|
	erretm = abs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	dphi = 0.f;
 | 
						|
	phi = 0.f;
 | 
						|
	i__1 = iip1;
 | 
						|
	for (j = *n; j >= i__1; --j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    phi += z__[j] * temp;
 | 
						|
	    dphi += temp * temp;
 | 
						|
	    erretm += phi;
 | 
						|
/* L200: */
 | 
						|
	}
 | 
						|
 | 
						|
	temp = z__[ii] / delta[ii];
 | 
						|
	dw = dpsi + dphi + temp * temp;
 | 
						|
	temp = z__[ii] * temp;
 | 
						|
	w = rhoinv + phi + psi + temp;
 | 
						|
	erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) * 3.f 
 | 
						|
		+ (r__1 = tau + eta, abs(r__1)) * dw;
 | 
						|
 | 
						|
	swtch = FALSE_;
 | 
						|
	if (orgati) {
 | 
						|
	    if (-w > abs(prew) / 10.f) {
 | 
						|
		swtch = TRUE_;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    if (w > abs(prew) / 10.f) {
 | 
						|
		swtch = TRUE_;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	tau += eta;
 | 
						|
 | 
						|
/*        Main loop to update the values of the array   DELTA */
 | 
						|
 | 
						|
	iter = niter + 1;
 | 
						|
 | 
						|
	for (niter = iter; niter <= 30; ++niter) {
 | 
						|
 | 
						|
/*           Test for convergence */
 | 
						|
 | 
						|
	    if (abs(w) <= eps * erretm) {
 | 
						|
		if (orgati) {
 | 
						|
		    *dlam = d__[*i__] + tau;
 | 
						|
		} else {
 | 
						|
		    *dlam = d__[ip1] + tau;
 | 
						|
		}
 | 
						|
		goto L250;
 | 
						|
	    }
 | 
						|
 | 
						|
	    if (w <= 0.f) {
 | 
						|
		dltlb = f2cmax(dltlb,tau);
 | 
						|
	    } else {
 | 
						|
		dltub = f2cmin(dltub,tau);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Calculate the new step */
 | 
						|
 | 
						|
	    if (! swtch3) {
 | 
						|
		if (! swtch) {
 | 
						|
		    if (orgati) {
 | 
						|
/* Computing 2nd power */
 | 
						|
			r__1 = z__[*i__] / delta[*i__];
 | 
						|
			c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (
 | 
						|
				r__1 * r__1);
 | 
						|
		    } else {
 | 
						|
/* Computing 2nd power */
 | 
						|
			r__1 = z__[ip1] / delta[ip1];
 | 
						|
			c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * 
 | 
						|
				(r__1 * r__1);
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    temp = z__[ii] / delta[ii];
 | 
						|
		    if (orgati) {
 | 
						|
			dpsi += temp * temp;
 | 
						|
		    } else {
 | 
						|
			dphi += temp * temp;
 | 
						|
		    }
 | 
						|
		    c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi;
 | 
						|
		}
 | 
						|
		a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] 
 | 
						|
			* dw;
 | 
						|
		b = delta[*i__] * delta[ip1] * w;
 | 
						|
		if (c__ == 0.f) {
 | 
						|
		    if (a == 0.f) {
 | 
						|
			if (! swtch) {
 | 
						|
			    if (orgati) {
 | 
						|
				a = z__[*i__] * z__[*i__] + delta[ip1] * 
 | 
						|
					delta[ip1] * (dpsi + dphi);
 | 
						|
			    } else {
 | 
						|
				a = z__[ip1] * z__[ip1] + delta[*i__] * delta[
 | 
						|
					*i__] * (dpsi + dphi);
 | 
						|
			    }
 | 
						|
			} else {
 | 
						|
			    a = delta[*i__] * delta[*i__] * dpsi + delta[ip1] 
 | 
						|
				    * delta[ip1] * dphi;
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		    eta = b / a;
 | 
						|
		} else if (a <= 0.f) {
 | 
						|
		    eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))
 | 
						|
			    ) / (c__ * 2.f);
 | 
						|
		} else {
 | 
						|
		    eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, 
 | 
						|
			    abs(r__1))));
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              Interpolation using THREE most relevant poles */
 | 
						|
 | 
						|
		temp = rhoinv + psi + phi;
 | 
						|
		if (swtch) {
 | 
						|
		    c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi;
 | 
						|
		    zz[0] = delta[iim1] * delta[iim1] * dpsi;
 | 
						|
		    zz[2] = delta[iip1] * delta[iip1] * dphi;
 | 
						|
		} else {
 | 
						|
		    if (orgati) {
 | 
						|
			temp1 = z__[iim1] / delta[iim1];
 | 
						|
			temp1 *= temp1;
 | 
						|
			c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] 
 | 
						|
				- d__[iip1]) * temp1;
 | 
						|
			zz[0] = z__[iim1] * z__[iim1];
 | 
						|
			zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + 
 | 
						|
				dphi);
 | 
						|
		    } else {
 | 
						|
			temp1 = z__[iip1] / delta[iip1];
 | 
						|
			temp1 *= temp1;
 | 
						|
			c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] 
 | 
						|
				- d__[iim1]) * temp1;
 | 
						|
			zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - 
 | 
						|
				temp1));
 | 
						|
			zz[2] = z__[iip1] * z__[iip1];
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		slaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, 
 | 
						|
			info);
 | 
						|
		if (*info != 0) {
 | 
						|
		    goto L250;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Note, eta should be positive if w is negative, and */
 | 
						|
/*           eta should be negative otherwise. However, */
 | 
						|
/*           if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*           we simply use one Newton step instead. This way */
 | 
						|
/*           will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	    if (w * eta >= 0.f) {
 | 
						|
		eta = -w / dw;
 | 
						|
	    }
 | 
						|
	    temp = tau + eta;
 | 
						|
	    if (temp > dltub || temp < dltlb) {
 | 
						|
		if (w < 0.f) {
 | 
						|
		    eta = (dltub - tau) / 2.f;
 | 
						|
		} else {
 | 
						|
		    eta = (dltlb - tau) / 2.f;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		delta[j] -= eta;
 | 
						|
/* L210: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    tau += eta;
 | 
						|
	    prew = w;
 | 
						|
 | 
						|
/*           Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	    dpsi = 0.f;
 | 
						|
	    psi = 0.f;
 | 
						|
	    erretm = 0.f;
 | 
						|
	    i__1 = iim1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		temp = z__[j] / delta[j];
 | 
						|
		psi += z__[j] * temp;
 | 
						|
		dpsi += temp * temp;
 | 
						|
		erretm += psi;
 | 
						|
/* L220: */
 | 
						|
	    }
 | 
						|
	    erretm = abs(erretm);
 | 
						|
 | 
						|
/*           Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	    dphi = 0.f;
 | 
						|
	    phi = 0.f;
 | 
						|
	    i__1 = iip1;
 | 
						|
	    for (j = *n; j >= i__1; --j) {
 | 
						|
		temp = z__[j] / delta[j];
 | 
						|
		phi += z__[j] * temp;
 | 
						|
		dphi += temp * temp;
 | 
						|
		erretm += phi;
 | 
						|
/* L230: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    temp = z__[ii] / delta[ii];
 | 
						|
	    dw = dpsi + dphi + temp * temp;
 | 
						|
	    temp = z__[ii] * temp;
 | 
						|
	    w = rhoinv + phi + psi + temp;
 | 
						|
	    erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) * 
 | 
						|
		    3.f + abs(tau) * dw;
 | 
						|
	    if (w * prew > 0.f && abs(w) > abs(prew) / 10.f) {
 | 
						|
		swtch = ! swtch;
 | 
						|
	    }
 | 
						|
 | 
						|
/* L240: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Return with INFO = 1, NITER = MAXIT and not converged */
 | 
						|
 | 
						|
	*info = 1;
 | 
						|
	if (orgati) {
 | 
						|
	    *dlam = d__[*i__] + tau;
 | 
						|
	} else {
 | 
						|
	    *dlam = d__[ip1] + tau;
 | 
						|
	}
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
L250:
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SLAED4 */
 | 
						|
 | 
						|
} /* slaed4_ */
 | 
						|
 |