1093 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1093 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static logical c_false = FALSE_;
 | 
						|
static logical c_true = TRUE_;
 | 
						|
 | 
						|
/* > \brief \b SHSEIN */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SHSEIN + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/shsein.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/shsein.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/shsein.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, */
 | 
						|
/*                          VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL, */
 | 
						|
/*                          IFAILR, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          EIGSRC, INITV, SIDE */
 | 
						|
/*       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N */
 | 
						|
/*       LOGICAL            SELECT( * ) */
 | 
						|
/*       INTEGER            IFAILL( * ), IFAILR( * ) */
 | 
						|
/*       REAL               H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), */
 | 
						|
/*      $                   WI( * ), WORK( * ), WR( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SHSEIN uses inverse iteration to find specified right and/or left */
 | 
						|
/* > eigenvectors of a real upper Hessenberg matrix H. */
 | 
						|
/* > */
 | 
						|
/* > The right eigenvector x and the left eigenvector y of the matrix H */
 | 
						|
/* > corresponding to an eigenvalue w are defined by: */
 | 
						|
/* > */
 | 
						|
/* >              H * x = w * x,     y**h * H = w * y**h */
 | 
						|
/* > */
 | 
						|
/* > where y**h denotes the conjugate transpose of the vector y. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] SIDE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SIDE is CHARACTER*1 */
 | 
						|
/* >          = 'R': compute right eigenvectors only; */
 | 
						|
/* >          = 'L': compute left eigenvectors only; */
 | 
						|
/* >          = 'B': compute both right and left eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] EIGSRC */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          EIGSRC is CHARACTER*1 */
 | 
						|
/* >          Specifies the source of eigenvalues supplied in (WR,WI): */
 | 
						|
/* >          = 'Q': the eigenvalues were found using SHSEQR; thus, if */
 | 
						|
/* >                 H has zero subdiagonal elements, and so is */
 | 
						|
/* >                 block-triangular, then the j-th eigenvalue can be */
 | 
						|
/* >                 assumed to be an eigenvalue of the block containing */
 | 
						|
/* >                 the j-th row/column.  This property allows SHSEIN to */
 | 
						|
/* >                 perform inverse iteration on just one diagonal block. */
 | 
						|
/* >          = 'N': no assumptions are made on the correspondence */
 | 
						|
/* >                 between eigenvalues and diagonal blocks.  In this */
 | 
						|
/* >                 case, SHSEIN must always perform inverse iteration */
 | 
						|
/* >                 using the whole matrix H. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] INITV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INITV is CHARACTER*1 */
 | 
						|
/* >          = 'N': no initial vectors are supplied; */
 | 
						|
/* >          = 'U': user-supplied initial vectors are stored in the arrays */
 | 
						|
/* >                 VL and/or VR. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] SELECT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SELECT is LOGICAL array, dimension (N) */
 | 
						|
/* >          Specifies the eigenvectors to be computed. To select the */
 | 
						|
/* >          real eigenvector corresponding to a real eigenvalue WR(j), */
 | 
						|
/* >          SELECT(j) must be set to .TRUE.. To select the complex */
 | 
						|
/* >          eigenvector corresponding to a complex eigenvalue */
 | 
						|
/* >          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)), */
 | 
						|
/* >          either SELECT(j) or SELECT(j+1) or both must be set to */
 | 
						|
/* >          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is */
 | 
						|
/* >          .FALSE.. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix H.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] H */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          H is REAL array, dimension (LDH,N) */
 | 
						|
/* >          The upper Hessenberg matrix H. */
 | 
						|
/* >          If a NaN is detected in H, the routine will return with INFO=-6. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDH */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDH is INTEGER */
 | 
						|
/* >          The leading dimension of the array H.  LDH >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] WR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WR is REAL array, dimension (N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] WI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WI is REAL array, dimension (N) */
 | 
						|
/* > */
 | 
						|
/* >          On entry, the real and imaginary parts of the eigenvalues of */
 | 
						|
/* >          H; a complex conjugate pair of eigenvalues must be stored in */
 | 
						|
/* >          consecutive elements of WR and WI. */
 | 
						|
/* >          On exit, WR may have been altered since close eigenvalues */
 | 
						|
/* >          are perturbed slightly in searching for independent */
 | 
						|
/* >          eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] VL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VL is REAL array, dimension (LDVL,MM) */
 | 
						|
/* >          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must */
 | 
						|
/* >          contain starting vectors for the inverse iteration for the */
 | 
						|
/* >          left eigenvectors; the starting vector for each eigenvector */
 | 
						|
/* >          must be in the same column(s) in which the eigenvector will */
 | 
						|
/* >          be stored. */
 | 
						|
/* >          On exit, if SIDE = 'L' or 'B', the left eigenvectors */
 | 
						|
/* >          specified by SELECT will be stored consecutively in the */
 | 
						|
/* >          columns of VL, in the same order as their eigenvalues. A */
 | 
						|
/* >          complex eigenvector corresponding to a complex eigenvalue is */
 | 
						|
/* >          stored in two consecutive columns, the first holding the real */
 | 
						|
/* >          part and the second the imaginary part. */
 | 
						|
/* >          If SIDE = 'R', VL is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVL is INTEGER */
 | 
						|
/* >          The leading dimension of the array VL. */
 | 
						|
/* >          LDVL >= f2cmax(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] VR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VR is REAL array, dimension (LDVR,MM) */
 | 
						|
/* >          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must */
 | 
						|
/* >          contain starting vectors for the inverse iteration for the */
 | 
						|
/* >          right eigenvectors; the starting vector for each eigenvector */
 | 
						|
/* >          must be in the same column(s) in which the eigenvector will */
 | 
						|
/* >          be stored. */
 | 
						|
/* >          On exit, if SIDE = 'R' or 'B', the right eigenvectors */
 | 
						|
/* >          specified by SELECT will be stored consecutively in the */
 | 
						|
/* >          columns of VR, in the same order as their eigenvalues. A */
 | 
						|
/* >          complex eigenvector corresponding to a complex eigenvalue is */
 | 
						|
/* >          stored in two consecutive columns, the first holding the real */
 | 
						|
/* >          part and the second the imaginary part. */
 | 
						|
/* >          If SIDE = 'L', VR is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVR is INTEGER */
 | 
						|
/* >          The leading dimension of the array VR. */
 | 
						|
/* >          LDVR >= f2cmax(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] MM */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          MM is INTEGER */
 | 
						|
/* >          The number of columns in the arrays VL and/or VR. MM >= M. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The number of columns in the arrays VL and/or VR required to */
 | 
						|
/* >          store the eigenvectors; each selected real eigenvector */
 | 
						|
/* >          occupies one column and each selected complex eigenvector */
 | 
						|
/* >          occupies two columns. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is REAL array, dimension ((N+2)*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IFAILL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IFAILL is INTEGER array, dimension (MM) */
 | 
						|
/* >          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left */
 | 
						|
/* >          eigenvector in the i-th column of VL (corresponding to the */
 | 
						|
/* >          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the */
 | 
						|
/* >          eigenvector converged satisfactorily. If the i-th and (i+1)th */
 | 
						|
/* >          columns of VL hold a complex eigenvector, then IFAILL(i) and */
 | 
						|
/* >          IFAILL(i+1) are set to the same value. */
 | 
						|
/* >          If SIDE = 'R', IFAILL is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IFAILR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IFAILR is INTEGER array, dimension (MM) */
 | 
						|
/* >          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right */
 | 
						|
/* >          eigenvector in the i-th column of VR (corresponding to the */
 | 
						|
/* >          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the */
 | 
						|
/* >          eigenvector converged satisfactorily. If the i-th and (i+1)th */
 | 
						|
/* >          columns of VR hold a complex eigenvector, then IFAILR(i) and */
 | 
						|
/* >          IFAILR(i+1) are set to the same value. */
 | 
						|
/* >          If SIDE = 'L', IFAILR is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          > 0:  if INFO = i, i is the number of eigenvectors which */
 | 
						|
/* >                failed to converge; see IFAILL and IFAILR for further */
 | 
						|
/* >                details. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup realOTHERcomputational */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  Each eigenvector is normalized so that the element of largest */
 | 
						|
/* >  magnitude has magnitude 1; here the magnitude of a complex number */
 | 
						|
/* >  (x,y) is taken to be |x|+|y|. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int shsein_(char *side, char *eigsrc, char *initv, logical *
 | 
						|
	select, integer *n, real *h__, integer *ldh, real *wr, real *wi, real 
 | 
						|
	*vl, integer *ldvl, real *vr, integer *ldvr, integer *mm, integer *m, 
 | 
						|
	real *work, integer *ifaill, integer *ifailr, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
 | 
						|
	    i__2;
 | 
						|
    real r__1, r__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    logical pair;
 | 
						|
    real unfl;
 | 
						|
    integer i__, k;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer iinfo;
 | 
						|
    logical leftv, bothv;
 | 
						|
    real hnorm;
 | 
						|
    integer kl, kr;
 | 
						|
    extern real slamch_(char *);
 | 
						|
    extern /* Subroutine */ int slaein_(logical *, logical *, integer *, real 
 | 
						|
	    *, integer *, real *, real *, real *, real *, real *, integer *, 
 | 
						|
	    real *, real *, real *, real *, integer *), xerbla_(char *, 
 | 
						|
	    integer *, ftnlen);
 | 
						|
    real bignum;
 | 
						|
    extern real slanhs_(char *, integer *, real *, integer *, real *);
 | 
						|
    extern logical sisnan_(real *);
 | 
						|
    logical noinit;
 | 
						|
    integer ldwork;
 | 
						|
    logical rightv, fromqr;
 | 
						|
    real smlnum;
 | 
						|
    integer kln, ksi;
 | 
						|
    real wki;
 | 
						|
    integer ksr;
 | 
						|
    real ulp, wkr, eps3;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Decode and test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --select;
 | 
						|
    h_dim1 = *ldh;
 | 
						|
    h_offset = 1 + h_dim1 * 1;
 | 
						|
    h__ -= h_offset;
 | 
						|
    --wr;
 | 
						|
    --wi;
 | 
						|
    vl_dim1 = *ldvl;
 | 
						|
    vl_offset = 1 + vl_dim1 * 1;
 | 
						|
    vl -= vl_offset;
 | 
						|
    vr_dim1 = *ldvr;
 | 
						|
    vr_offset = 1 + vr_dim1 * 1;
 | 
						|
    vr -= vr_offset;
 | 
						|
    --work;
 | 
						|
    --ifaill;
 | 
						|
    --ifailr;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    bothv = lsame_(side, "B");
 | 
						|
    rightv = lsame_(side, "R") || bothv;
 | 
						|
    leftv = lsame_(side, "L") || bothv;
 | 
						|
 | 
						|
    fromqr = lsame_(eigsrc, "Q");
 | 
						|
 | 
						|
    noinit = lsame_(initv, "N");
 | 
						|
 | 
						|
/*     Set M to the number of columns required to store the selected */
 | 
						|
/*     eigenvectors, and standardize the array SELECT. */
 | 
						|
 | 
						|
    *m = 0;
 | 
						|
    pair = FALSE_;
 | 
						|
    i__1 = *n;
 | 
						|
    for (k = 1; k <= i__1; ++k) {
 | 
						|
	if (pair) {
 | 
						|
	    pair = FALSE_;
 | 
						|
	    select[k] = FALSE_;
 | 
						|
	} else {
 | 
						|
	    if (wi[k] == 0.f) {
 | 
						|
		if (select[k]) {
 | 
						|
		    ++(*m);
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		pair = TRUE_;
 | 
						|
		if (select[k] || select[k + 1]) {
 | 
						|
		    select[k] = TRUE_;
 | 
						|
		    *m += 2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
/* L10: */
 | 
						|
    }
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    if (! rightv && ! leftv) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! fromqr && ! lsame_(eigsrc, "N")) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (! noinit && ! lsame_(initv, "U")) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*ldh < f2cmax(1,*n)) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (*ldvl < 1 || leftv && *ldvl < *n) {
 | 
						|
	*info = -11;
 | 
						|
    } else if (*ldvr < 1 || rightv && *ldvr < *n) {
 | 
						|
	*info = -13;
 | 
						|
    } else if (*mm < *m) {
 | 
						|
	*info = -14;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SHSEIN", &i__1, (ftnlen)6);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible. */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Set machine-dependent constants. */
 | 
						|
 | 
						|
    unfl = slamch_("Safe minimum");
 | 
						|
    ulp = slamch_("Precision");
 | 
						|
    smlnum = unfl * (*n / ulp);
 | 
						|
    bignum = (1.f - ulp) / smlnum;
 | 
						|
 | 
						|
    ldwork = *n + 1;
 | 
						|
 | 
						|
    kl = 1;
 | 
						|
    kln = 0;
 | 
						|
    if (fromqr) {
 | 
						|
	kr = 0;
 | 
						|
    } else {
 | 
						|
	kr = *n;
 | 
						|
    }
 | 
						|
    ksr = 1;
 | 
						|
 | 
						|
    i__1 = *n;
 | 
						|
    for (k = 1; k <= i__1; ++k) {
 | 
						|
	if (select[k]) {
 | 
						|
 | 
						|
/*           Compute eigenvector(s) corresponding to W(K). */
 | 
						|
 | 
						|
	    if (fromqr) {
 | 
						|
 | 
						|
/*              If affiliation of eigenvalues is known, check whether */
 | 
						|
/*              the matrix splits. */
 | 
						|
 | 
						|
/*              Determine KL and KR such that 1 <= KL <= K <= KR <= N */
 | 
						|
/*              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or */
 | 
						|
/*              KR = N). */
 | 
						|
 | 
						|
/*              Then inverse iteration can be performed with the */
 | 
						|
/*              submatrix H(KL:N,KL:N) for a left eigenvector, and with */
 | 
						|
/*              the submatrix H(1:KR,1:KR) for a right eigenvector. */
 | 
						|
 | 
						|
		i__2 = kl + 1;
 | 
						|
		for (i__ = k; i__ >= i__2; --i__) {
 | 
						|
		    if (h__[i__ + (i__ - 1) * h_dim1] == 0.f) {
 | 
						|
			goto L30;
 | 
						|
		    }
 | 
						|
/* L20: */
 | 
						|
		}
 | 
						|
L30:
 | 
						|
		kl = i__;
 | 
						|
		if (k > kr) {
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    for (i__ = k; i__ <= i__2; ++i__) {
 | 
						|
			if (h__[i__ + 1 + i__ * h_dim1] == 0.f) {
 | 
						|
			    goto L50;
 | 
						|
			}
 | 
						|
/* L40: */
 | 
						|
		    }
 | 
						|
L50:
 | 
						|
		    kr = i__;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    if (kl != kln) {
 | 
						|
		kln = kl;
 | 
						|
 | 
						|
/*              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it */
 | 
						|
/*              has not ben computed before. */
 | 
						|
 | 
						|
		i__2 = kr - kl + 1;
 | 
						|
		hnorm = slanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, &
 | 
						|
			work[1]);
 | 
						|
		if (sisnan_(&hnorm)) {
 | 
						|
		    *info = -6;
 | 
						|
		    return 0;
 | 
						|
		} else if (hnorm > 0.f) {
 | 
						|
		    eps3 = hnorm * ulp;
 | 
						|
		} else {
 | 
						|
		    eps3 = smlnum;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Perturb eigenvalue if it is close to any previous */
 | 
						|
/*           selected eigenvalues affiliated to the submatrix */
 | 
						|
/*           H(KL:KR,KL:KR). Close roots are modified by EPS3. */
 | 
						|
 | 
						|
	    wkr = wr[k];
 | 
						|
	    wki = wi[k];
 | 
						|
L60:
 | 
						|
	    i__2 = kl;
 | 
						|
	    for (i__ = k - 1; i__ >= i__2; --i__) {
 | 
						|
		if (select[i__] && (r__1 = wr[i__] - wkr, abs(r__1)) + (r__2 =
 | 
						|
			 wi[i__] - wki, abs(r__2)) < eps3) {
 | 
						|
		    wkr += eps3;
 | 
						|
		    goto L60;
 | 
						|
		}
 | 
						|
/* L70: */
 | 
						|
	    }
 | 
						|
	    wr[k] = wkr;
 | 
						|
 | 
						|
	    pair = wki != 0.f;
 | 
						|
	    if (pair) {
 | 
						|
		ksi = ksr + 1;
 | 
						|
	    } else {
 | 
						|
		ksi = ksr;
 | 
						|
	    }
 | 
						|
	    if (leftv) {
 | 
						|
 | 
						|
/*              Compute left eigenvector. */
 | 
						|
 | 
						|
		i__2 = *n - kl + 1;
 | 
						|
		slaein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh,
 | 
						|
			 &wkr, &wki, &vl[kl + ksr * vl_dim1], &vl[kl + ksi * 
 | 
						|
			vl_dim1], &work[1], &ldwork, &work[*n * *n + *n + 1], 
 | 
						|
			&eps3, &smlnum, &bignum, &iinfo);
 | 
						|
		if (iinfo > 0) {
 | 
						|
		    if (pair) {
 | 
						|
			*info += 2;
 | 
						|
		    } else {
 | 
						|
			++(*info);
 | 
						|
		    }
 | 
						|
		    ifaill[ksr] = k;
 | 
						|
		    ifaill[ksi] = k;
 | 
						|
		} else {
 | 
						|
		    ifaill[ksr] = 0;
 | 
						|
		    ifaill[ksi] = 0;
 | 
						|
		}
 | 
						|
		i__2 = kl - 1;
 | 
						|
		for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		    vl[i__ + ksr * vl_dim1] = 0.f;
 | 
						|
/* L80: */
 | 
						|
		}
 | 
						|
		if (pair) {
 | 
						|
		    i__2 = kl - 1;
 | 
						|
		    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
			vl[i__ + ksi * vl_dim1] = 0.f;
 | 
						|
/* L90: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    if (rightv) {
 | 
						|
 | 
						|
/*              Compute right eigenvector. */
 | 
						|
 | 
						|
		slaein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wkr, &
 | 
						|
			wki, &vr[ksr * vr_dim1 + 1], &vr[ksi * vr_dim1 + 1], &
 | 
						|
			work[1], &ldwork, &work[*n * *n + *n + 1], &eps3, &
 | 
						|
			smlnum, &bignum, &iinfo);
 | 
						|
		if (iinfo > 0) {
 | 
						|
		    if (pair) {
 | 
						|
			*info += 2;
 | 
						|
		    } else {
 | 
						|
			++(*info);
 | 
						|
		    }
 | 
						|
		    ifailr[ksr] = k;
 | 
						|
		    ifailr[ksi] = k;
 | 
						|
		} else {
 | 
						|
		    ifailr[ksr] = 0;
 | 
						|
		    ifailr[ksi] = 0;
 | 
						|
		}
 | 
						|
		i__2 = *n;
 | 
						|
		for (i__ = kr + 1; i__ <= i__2; ++i__) {
 | 
						|
		    vr[i__ + ksr * vr_dim1] = 0.f;
 | 
						|
/* L100: */
 | 
						|
		}
 | 
						|
		if (pair) {
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (i__ = kr + 1; i__ <= i__2; ++i__) {
 | 
						|
			vr[i__ + ksi * vr_dim1] = 0.f;
 | 
						|
/* L110: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    if (pair) {
 | 
						|
		ksr += 2;
 | 
						|
	    } else {
 | 
						|
		++ksr;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
/* L120: */
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SHSEIN */
 | 
						|
 | 
						|
} /* shsein_ */
 | 
						|
 |