275 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			275 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGEMLQT
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
 | 
						|
*                          C, LDC, WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER SIDE, TRANS
 | 
						|
*       INTEGER   INFO, K, LDV, LDC, M, N, MB, LDT
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL      V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGEMLQT overwrites the general real M-by-N matrix C with
 | 
						|
*>
 | 
						|
*>                 SIDE = 'L'     SIDE = 'R'
 | 
						|
*> TRANS = 'N':      Q C            C Q
 | 
						|
*> TRANS = 'T':   Q**T C            C Q**T
 | 
						|
*>
 | 
						|
*> where Q is a real orthogonal matrix defined as the product of K
 | 
						|
*> elementary reflectors:
 | 
						|
*>
 | 
						|
*>       Q = H(1) H(2) . . . H(K) = I - V T V**T
 | 
						|
*>
 | 
						|
*> generated using the compact WY representation as returned by DGELQT.
 | 
						|
*>
 | 
						|
*> Q is of order M if SIDE = 'L' and of order N  if SIDE = 'R'.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'L': apply Q or Q**T from the Left;
 | 
						|
*>          = 'R': apply Q or Q**T from the Right.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N':  No transpose, apply Q;
 | 
						|
*>          = 'C':  Transpose, apply Q**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix C. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix C. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of elementary reflectors whose product defines
 | 
						|
*>          the matrix Q.
 | 
						|
*>          If SIDE = 'L', M >= K >= 0;
 | 
						|
*>          if SIDE = 'R', N >= K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MB
 | 
						|
*> \verbatim
 | 
						|
*>          MB is INTEGER
 | 
						|
*>          The block size used for the storage of T.  K >= MB >= 1.
 | 
						|
*>          This must be the same value of MB used to generate T
 | 
						|
*>          in DGELQT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is REAL array, dimension
 | 
						|
*>                               (LDV,M) if SIDE = 'L',
 | 
						|
*>                               (LDV,N) if SIDE = 'R'
 | 
						|
*>          The i-th row must contain the vector which defines the
 | 
						|
*>          elementary reflector H(i), for i = 1,2,...,k, as returned by
 | 
						|
*>          DGELQT in the first K rows of its array argument A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the array V. LDV >= max(1,K).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is REAL array, dimension (LDT,K)
 | 
						|
*>          The upper triangular factors of the block reflectors
 | 
						|
*>          as returned by DGELQT, stored as a MB-by-K matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T.  LDT >= MB.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL array, dimension (LDC,N)
 | 
						|
*>          On entry, the M-by-N matrix C.
 | 
						|
*>          On exit, C is overwritten by Q C, Q**T C, C Q**T or C Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array. The dimension of
 | 
						|
*>          WORK is N*MB if SIDE = 'L', or  M*MB if SIDE = 'R'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date November 2017
 | 
						|
*
 | 
						|
*> \ingroup doubleGEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
 | 
						|
     $                   C, LDC, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.8.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2017
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER SIDE, TRANS
 | 
						|
      INTEGER   INFO, K, LDV, LDC, M, N, MB, LDT
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL      V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LEFT, RIGHT, TRAN, NOTRAN
 | 
						|
      INTEGER            I, IB, LDWORK, KF
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, SLARFB
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     .. Test the input arguments ..
 | 
						|
*
 | 
						|
      INFO   = 0
 | 
						|
      LEFT   = LSAME( SIDE,  'L' )
 | 
						|
      RIGHT  = LSAME( SIDE,  'R' )
 | 
						|
      TRAN   = LSAME( TRANS, 'T' )
 | 
						|
      NOTRAN = LSAME( TRANS, 'N' )
 | 
						|
*
 | 
						|
      IF( LEFT ) THEN
 | 
						|
         LDWORK = MAX( 1, N )
 | 
						|
      ELSE IF ( RIGHT ) THEN
 | 
						|
         LDWORK = MAX( 1, M )
 | 
						|
      END IF
 | 
						|
      IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( K.LT.0) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( MB.LT.1 .OR. (MB.GT.K .AND. K.GT.0)) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDV.LT.MAX( 1, K ) ) THEN
 | 
						|
          INFO = -8
 | 
						|
      ELSE IF( LDT.LT.MB ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -12
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGEMLQT', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     .. Quick return if possible ..
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
 | 
						|
*
 | 
						|
      IF( LEFT .AND. NOTRAN ) THEN
 | 
						|
*
 | 
						|
         DO I = 1, K, MB
 | 
						|
            IB = MIN( MB, K-I+1 )
 | 
						|
            CALL SLARFB( 'L', 'T', 'F', 'R', M-I+1, N, IB,
 | 
						|
     $                   V( I, I ), LDV, T( 1, I ), LDT,
 | 
						|
     $                   C( I, 1 ), LDC, WORK, LDWORK )
 | 
						|
         END DO
 | 
						|
*
 | 
						|
      ELSE IF( RIGHT .AND. TRAN ) THEN
 | 
						|
*
 | 
						|
         DO I = 1, K, MB
 | 
						|
            IB = MIN( MB, K-I+1 )
 | 
						|
            CALL SLARFB( 'R', 'N', 'F', 'R', M, N-I+1, IB,
 | 
						|
     $                   V( I, I ), LDV, T( 1, I ), LDT,
 | 
						|
     $                   C( 1, I ), LDC, WORK, LDWORK )
 | 
						|
         END DO
 | 
						|
*
 | 
						|
      ELSE IF( LEFT .AND. TRAN ) THEN
 | 
						|
*
 | 
						|
         KF = ((K-1)/MB)*MB+1
 | 
						|
         DO I = KF, 1, -MB
 | 
						|
            IB = MIN( MB, K-I+1 )
 | 
						|
            CALL SLARFB( 'L', 'N', 'F', 'R', M-I+1, N, IB,
 | 
						|
     $                   V( I, I ), LDV, T( 1, I ), LDT,
 | 
						|
     $                   C( I, 1 ), LDC, WORK, LDWORK )
 | 
						|
         END DO
 | 
						|
*
 | 
						|
      ELSE IF( RIGHT .AND. NOTRAN ) THEN
 | 
						|
*
 | 
						|
         KF = ((K-1)/MB)*MB+1
 | 
						|
         DO I = KF, 1, -MB
 | 
						|
            IB = MIN( MB, K-I+1 )
 | 
						|
            CALL SLARFB( 'R', 'T', 'F', 'R', M, N-I+1, IB,
 | 
						|
     $                   V( I, I ), LDV, T( 1, I ), LDT,
 | 
						|
     $                   C( 1, I ), LDC, WORK, LDWORK )
 | 
						|
         END DO
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGEMLQT
 | 
						|
*
 | 
						|
      END
 |