446 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			446 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DSYTRS
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSYTRS + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrs.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrs.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrs.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDA, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSYTRS solves a system of linear equations A*X = B with a real
 | 
						|
*> symmetric matrix A using the factorization A = U*D*U**T or
 | 
						|
*> A = L*D*L**T computed by DSYTRF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the details of the factorization are stored
 | 
						|
*>          as an upper or lower triangular matrix.
 | 
						|
*>          = 'U':  Upper triangular, form is A = U*D*U**T;
 | 
						|
*>          = 'L':  Lower triangular, form is A = L*D*L**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          The block diagonal matrix D and the multipliers used to
 | 
						|
*>          obtain the factor U or L as computed by DSYTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          Details of the interchanges and the block structure of D
 | 
						|
*>          as determined by DSYTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the right hand side matrix B.
 | 
						|
*>          On exit, the solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleSYcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE
 | 
						|
      PARAMETER          ( ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            J, K, KP
 | 
						|
      DOUBLE PRECISION   AK, AKM1, AKM1K, BK, BKM1, DENOM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMV, DGER, DSCAL, DSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DSYTRS', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Solve A*X = B, where A = U*D*U**T.
 | 
						|
*
 | 
						|
*        First solve U*D*X = B, overwriting B with X.
 | 
						|
*
 | 
						|
*        K is the main loop index, decreasing from N to 1 in steps of
 | 
						|
*        1 or 2, depending on the size of the diagonal blocks.
 | 
						|
*
 | 
						|
         K = N
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*        If K < 1, exit from loop.
 | 
						|
*
 | 
						|
         IF( K.LT.1 )
 | 
						|
     $      GO TO 30
 | 
						|
*
 | 
						|
         IF( IPIV( K ).GT.0 ) THEN
 | 
						|
*
 | 
						|
*           1 x 1 diagonal block
 | 
						|
*
 | 
						|
*           Interchange rows K and IPIV(K).
 | 
						|
*
 | 
						|
            KP = IPIV( K )
 | 
						|
            IF( KP.NE.K )
 | 
						|
     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
*
 | 
						|
*           Multiply by inv(U(K)), where U(K) is the transformation
 | 
						|
*           stored in column K of A.
 | 
						|
*
 | 
						|
            CALL DGER( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
 | 
						|
     $                 B( 1, 1 ), LDB )
 | 
						|
*
 | 
						|
*           Multiply by the inverse of the diagonal block.
 | 
						|
*
 | 
						|
            CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
 | 
						|
            K = K - 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           2 x 2 diagonal block
 | 
						|
*
 | 
						|
*           Interchange rows K-1 and -IPIV(K).
 | 
						|
*
 | 
						|
            KP = -IPIV( K )
 | 
						|
            IF( KP.NE.K-1 )
 | 
						|
     $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
*
 | 
						|
*           Multiply by inv(U(K)), where U(K) is the transformation
 | 
						|
*           stored in columns K-1 and K of A.
 | 
						|
*
 | 
						|
            CALL DGER( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
 | 
						|
     $                 B( 1, 1 ), LDB )
 | 
						|
            CALL DGER( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
 | 
						|
     $                 LDB, B( 1, 1 ), LDB )
 | 
						|
*
 | 
						|
*           Multiply by the inverse of the diagonal block.
 | 
						|
*
 | 
						|
            AKM1K = A( K-1, K )
 | 
						|
            AKM1 = A( K-1, K-1 ) / AKM1K
 | 
						|
            AK = A( K, K ) / AKM1K
 | 
						|
            DENOM = AKM1*AK - ONE
 | 
						|
            DO 20 J = 1, NRHS
 | 
						|
               BKM1 = B( K-1, J ) / AKM1K
 | 
						|
               BK = B( K, J ) / AKM1K
 | 
						|
               B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
 | 
						|
               B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
 | 
						|
   20       CONTINUE
 | 
						|
            K = K - 2
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         GO TO 10
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        Next solve U**T *X = B, overwriting B with X.
 | 
						|
*
 | 
						|
*        K is the main loop index, increasing from 1 to N in steps of
 | 
						|
*        1 or 2, depending on the size of the diagonal blocks.
 | 
						|
*
 | 
						|
         K = 1
 | 
						|
   40    CONTINUE
 | 
						|
*
 | 
						|
*        If K > N, exit from loop.
 | 
						|
*
 | 
						|
         IF( K.GT.N )
 | 
						|
     $      GO TO 50
 | 
						|
*
 | 
						|
         IF( IPIV( K ).GT.0 ) THEN
 | 
						|
*
 | 
						|
*           1 x 1 diagonal block
 | 
						|
*
 | 
						|
*           Multiply by inv(U**T(K)), where U(K) is the transformation
 | 
						|
*           stored in column K of A.
 | 
						|
*
 | 
						|
            CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
 | 
						|
     $                  1, ONE, B( K, 1 ), LDB )
 | 
						|
*
 | 
						|
*           Interchange rows K and IPIV(K).
 | 
						|
*
 | 
						|
            KP = IPIV( K )
 | 
						|
            IF( KP.NE.K )
 | 
						|
     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            K = K + 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           2 x 2 diagonal block
 | 
						|
*
 | 
						|
*           Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
 | 
						|
*           stored in columns K and K+1 of A.
 | 
						|
*
 | 
						|
            CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
 | 
						|
     $                  1, ONE, B( K, 1 ), LDB )
 | 
						|
            CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB,
 | 
						|
     $                  A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
 | 
						|
*
 | 
						|
*           Interchange rows K and -IPIV(K).
 | 
						|
*
 | 
						|
            KP = -IPIV( K )
 | 
						|
            IF( KP.NE.K )
 | 
						|
     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            K = K + 2
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         GO TO 40
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Solve A*X = B, where A = L*D*L**T.
 | 
						|
*
 | 
						|
*        First solve L*D*X = B, overwriting B with X.
 | 
						|
*
 | 
						|
*        K is the main loop index, increasing from 1 to N in steps of
 | 
						|
*        1 or 2, depending on the size of the diagonal blocks.
 | 
						|
*
 | 
						|
         K = 1
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
*        If K > N, exit from loop.
 | 
						|
*
 | 
						|
         IF( K.GT.N )
 | 
						|
     $      GO TO 80
 | 
						|
*
 | 
						|
         IF( IPIV( K ).GT.0 ) THEN
 | 
						|
*
 | 
						|
*           1 x 1 diagonal block
 | 
						|
*
 | 
						|
*           Interchange rows K and IPIV(K).
 | 
						|
*
 | 
						|
            KP = IPIV( K )
 | 
						|
            IF( KP.NE.K )
 | 
						|
     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
*
 | 
						|
*           Multiply by inv(L(K)), where L(K) is the transformation
 | 
						|
*           stored in column K of A.
 | 
						|
*
 | 
						|
            IF( K.LT.N )
 | 
						|
     $         CALL DGER( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
 | 
						|
     $                    LDB, B( K+1, 1 ), LDB )
 | 
						|
*
 | 
						|
*           Multiply by the inverse of the diagonal block.
 | 
						|
*
 | 
						|
            CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
 | 
						|
            K = K + 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           2 x 2 diagonal block
 | 
						|
*
 | 
						|
*           Interchange rows K+1 and -IPIV(K).
 | 
						|
*
 | 
						|
            KP = -IPIV( K )
 | 
						|
            IF( KP.NE.K+1 )
 | 
						|
     $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
*
 | 
						|
*           Multiply by inv(L(K)), where L(K) is the transformation
 | 
						|
*           stored in columns K and K+1 of A.
 | 
						|
*
 | 
						|
            IF( K.LT.N-1 ) THEN
 | 
						|
               CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
 | 
						|
     $                    LDB, B( K+2, 1 ), LDB )
 | 
						|
               CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
 | 
						|
     $                    B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Multiply by the inverse of the diagonal block.
 | 
						|
*
 | 
						|
            AKM1K = A( K+1, K )
 | 
						|
            AKM1 = A( K, K ) / AKM1K
 | 
						|
            AK = A( K+1, K+1 ) / AKM1K
 | 
						|
            DENOM = AKM1*AK - ONE
 | 
						|
            DO 70 J = 1, NRHS
 | 
						|
               BKM1 = B( K, J ) / AKM1K
 | 
						|
               BK = B( K+1, J ) / AKM1K
 | 
						|
               B( K, J ) = ( AK*BKM1-BK ) / DENOM
 | 
						|
               B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
 | 
						|
   70       CONTINUE
 | 
						|
            K = K + 2
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         GO TO 60
 | 
						|
   80    CONTINUE
 | 
						|
*
 | 
						|
*        Next solve L**T *X = B, overwriting B with X.
 | 
						|
*
 | 
						|
*        K is the main loop index, decreasing from N to 1 in steps of
 | 
						|
*        1 or 2, depending on the size of the diagonal blocks.
 | 
						|
*
 | 
						|
         K = N
 | 
						|
   90    CONTINUE
 | 
						|
*
 | 
						|
*        If K < 1, exit from loop.
 | 
						|
*
 | 
						|
         IF( K.LT.1 )
 | 
						|
     $      GO TO 100
 | 
						|
*
 | 
						|
         IF( IPIV( K ).GT.0 ) THEN
 | 
						|
*
 | 
						|
*           1 x 1 diagonal block
 | 
						|
*
 | 
						|
*           Multiply by inv(L**T(K)), where L(K) is the transformation
 | 
						|
*           stored in column K of A.
 | 
						|
*
 | 
						|
            IF( K.LT.N )
 | 
						|
     $         CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
 | 
						|
     $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
 | 
						|
*
 | 
						|
*           Interchange rows K and IPIV(K).
 | 
						|
*
 | 
						|
            KP = IPIV( K )
 | 
						|
            IF( KP.NE.K )
 | 
						|
     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            K = K - 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           2 x 2 diagonal block
 | 
						|
*
 | 
						|
*           Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
 | 
						|
*           stored in columns K-1 and K of A.
 | 
						|
*
 | 
						|
            IF( K.LT.N ) THEN
 | 
						|
               CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
 | 
						|
     $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
 | 
						|
               CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
 | 
						|
     $                     LDB, A( K+1, K-1 ), 1, ONE, B( K-1, 1 ),
 | 
						|
     $                     LDB )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Interchange rows K and -IPIV(K).
 | 
						|
*
 | 
						|
            KP = -IPIV( K )
 | 
						|
            IF( KP.NE.K )
 | 
						|
     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            K = K - 2
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         GO TO 90
 | 
						|
  100    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSYTRS
 | 
						|
*
 | 
						|
      END
 |