422 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			422 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLASQ3 checks for deflation, computes a shift and calls dqds. Used by sbdsqr.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLASQ3 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq3.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq3.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq3.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
 | 
						|
*                          ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
 | 
						|
*                          DN2, G, TAU )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            IEEE
 | 
						|
*       INTEGER            I0, ITER, N0, NDIV, NFAIL, PP
 | 
						|
*       DOUBLE PRECISION   DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
 | 
						|
*      $                   QMAX, SIGMA, TAU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   Z( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
 | 
						|
*> In case of failure it changes shifts, and tries again until output
 | 
						|
*> is positive.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] I0
 | 
						|
*> \verbatim
 | 
						|
*>          I0 is INTEGER
 | 
						|
*>         First index.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] N0
 | 
						|
*> \verbatim
 | 
						|
*>          N0 is INTEGER
 | 
						|
*>         Last index.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension ( 4*N0 )
 | 
						|
*>         Z holds the qd array.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] PP
 | 
						|
*> \verbatim
 | 
						|
*>          PP is INTEGER
 | 
						|
*>         PP=0 for ping, PP=1 for pong.
 | 
						|
*>         PP=2 indicates that flipping was applied to the Z array
 | 
						|
*>         and that the initial tests for deflation should not be
 | 
						|
*>         performed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DMIN
 | 
						|
*> \verbatim
 | 
						|
*>          DMIN is DOUBLE PRECISION
 | 
						|
*>         Minimum value of d.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SIGMA
 | 
						|
*> \verbatim
 | 
						|
*>          SIGMA is DOUBLE PRECISION
 | 
						|
*>         Sum of shifts used in current segment.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DESIG
 | 
						|
*> \verbatim
 | 
						|
*>          DESIG is DOUBLE PRECISION
 | 
						|
*>         Lower order part of SIGMA
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] QMAX
 | 
						|
*> \verbatim
 | 
						|
*>          QMAX is DOUBLE PRECISION
 | 
						|
*>         Maximum value of q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] NFAIL
 | 
						|
*> \verbatim
 | 
						|
*>          NFAIL is INTEGER
 | 
						|
*>         Increment NFAIL by 1 each time the shift was too big.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ITER
 | 
						|
*> \verbatim
 | 
						|
*>          ITER is INTEGER
 | 
						|
*>         Increment ITER by 1 for each iteration.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] NDIV
 | 
						|
*> \verbatim
 | 
						|
*>          NDIV is INTEGER
 | 
						|
*>         Increment NDIV by 1 for each division.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IEEE
 | 
						|
*> \verbatim
 | 
						|
*>          IEEE is LOGICAL
 | 
						|
*>         Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] TTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          TTYPE is INTEGER
 | 
						|
*>         Shift type.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DMIN1
 | 
						|
*> \verbatim
 | 
						|
*>          DMIN1 is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DMIN2
 | 
						|
*> \verbatim
 | 
						|
*>          DMIN2 is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DN
 | 
						|
*> \verbatim
 | 
						|
*>          DN is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DN1
 | 
						|
*> \verbatim
 | 
						|
*>          DN1 is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DN2
 | 
						|
*> \verbatim
 | 
						|
*>          DN2 is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] G
 | 
						|
*> \verbatim
 | 
						|
*>          G is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is DOUBLE PRECISION
 | 
						|
*>
 | 
						|
*>         These are passed as arguments in order to save their values
 | 
						|
*>         between calls to DLASQ3.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2016
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
 | 
						|
     $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
 | 
						|
     $                   DN2, G, TAU )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            IEEE
 | 
						|
      INTEGER            I0, ITER, N0, NDIV, NFAIL, PP
 | 
						|
      DOUBLE PRECISION   DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
 | 
						|
     $                   QMAX, SIGMA, TAU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   Z( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   CBIAS
 | 
						|
      PARAMETER          ( CBIAS = 1.50D0 )
 | 
						|
      DOUBLE PRECISION   ZERO, QURTR, HALF, ONE, TWO, HUNDRD
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,
 | 
						|
     $                     ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            IPN4, J4, N0IN, NN, TTYPE
 | 
						|
      DOUBLE PRECISION   EPS, S, T, TEMP, TOL, TOL2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLASQ4, DLASQ5, DLASQ6
 | 
						|
*     ..
 | 
						|
*     .. External Function ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      LOGICAL            DISNAN
 | 
						|
      EXTERNAL           DISNAN, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      N0IN = N0
 | 
						|
      EPS = DLAMCH( 'Precision' )
 | 
						|
      TOL = EPS*HUNDRD
 | 
						|
      TOL2 = TOL**2
 | 
						|
*
 | 
						|
*     Check for deflation.
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      IF( N0.LT.I0 )
 | 
						|
     $   RETURN
 | 
						|
      IF( N0.EQ.I0 )
 | 
						|
     $   GO TO 20
 | 
						|
      NN = 4*N0 + PP
 | 
						|
      IF( N0.EQ.( I0+1 ) )
 | 
						|
     $   GO TO 40
 | 
						|
*
 | 
						|
*     Check whether E(N0-1) is negligible, 1 eigenvalue.
 | 
						|
*
 | 
						|
      IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
 | 
						|
     $    Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
 | 
						|
     $   GO TO 30
 | 
						|
*
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
 | 
						|
      N0 = N0 - 1
 | 
						|
      GO TO 10
 | 
						|
*
 | 
						|
*     Check  whether E(N0-2) is negligible, 2 eigenvalues.
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
      IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
 | 
						|
     $    Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
 | 
						|
     $   GO TO 50
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
 | 
						|
         S = Z( NN-3 )
 | 
						|
         Z( NN-3 ) = Z( NN-7 )
 | 
						|
         Z( NN-7 ) = S
 | 
						|
      END IF
 | 
						|
      T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
 | 
						|
      IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2.AND.T.NE.ZERO ) THEN
 | 
						|
         S = Z( NN-3 )*( Z( NN-5 ) / T )
 | 
						|
         IF( S.LE.T ) THEN
 | 
						|
            S = Z( NN-3 )*( Z( NN-5 ) /
 | 
						|
     $          ( T*( ONE+SQRT( ONE+S / T ) ) ) )
 | 
						|
         ELSE
 | 
						|
            S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
 | 
						|
         END IF
 | 
						|
         T = Z( NN-7 ) + ( S+Z( NN-5 ) )
 | 
						|
         Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
 | 
						|
         Z( NN-7 ) = T
 | 
						|
      END IF
 | 
						|
      Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
 | 
						|
      Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
 | 
						|
      N0 = N0 - 2
 | 
						|
      GO TO 10
 | 
						|
*
 | 
						|
   50 CONTINUE
 | 
						|
      IF( PP.EQ.2 )
 | 
						|
     $   PP = 0
 | 
						|
*
 | 
						|
*     Reverse the qd-array, if warranted.
 | 
						|
*
 | 
						|
      IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
 | 
						|
         IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
 | 
						|
            IPN4 = 4*( I0+N0 )
 | 
						|
            DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
 | 
						|
               TEMP = Z( J4-3 )
 | 
						|
               Z( J4-3 ) = Z( IPN4-J4-3 )
 | 
						|
               Z( IPN4-J4-3 ) = TEMP
 | 
						|
               TEMP = Z( J4-2 )
 | 
						|
               Z( J4-2 ) = Z( IPN4-J4-2 )
 | 
						|
               Z( IPN4-J4-2 ) = TEMP
 | 
						|
               TEMP = Z( J4-1 )
 | 
						|
               Z( J4-1 ) = Z( IPN4-J4-5 )
 | 
						|
               Z( IPN4-J4-5 ) = TEMP
 | 
						|
               TEMP = Z( J4 )
 | 
						|
               Z( J4 ) = Z( IPN4-J4-4 )
 | 
						|
               Z( IPN4-J4-4 ) = TEMP
 | 
						|
   60       CONTINUE
 | 
						|
            IF( N0-I0.LE.4 ) THEN
 | 
						|
               Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
 | 
						|
               Z( 4*N0-PP ) = Z( 4*I0-PP )
 | 
						|
            END IF
 | 
						|
            DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
 | 
						|
            Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
 | 
						|
     $                            Z( 4*I0+PP+3 ) )
 | 
						|
            Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
 | 
						|
     $                          Z( 4*I0-PP+4 ) )
 | 
						|
            QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
 | 
						|
            DMIN = -ZERO
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Choose a shift.
 | 
						|
*
 | 
						|
      CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
 | 
						|
     $             DN2, TAU, TTYPE, G )
 | 
						|
*
 | 
						|
*     Call dqds until DMIN > 0.
 | 
						|
*
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
      CALL DLASQ5( I0, N0, Z, PP, TAU, SIGMA, DMIN, DMIN1, DMIN2, DN,
 | 
						|
     $             DN1, DN2, IEEE, EPS )
 | 
						|
*
 | 
						|
      NDIV = NDIV + ( N0-I0+2 )
 | 
						|
      ITER = ITER + 1
 | 
						|
*
 | 
						|
*     Check status.
 | 
						|
*
 | 
						|
      IF( DMIN.GE.ZERO .AND. DMIN1.GE.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Success.
 | 
						|
*
 | 
						|
         GO TO 90
 | 
						|
*
 | 
						|
      ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND.
 | 
						|
     $         Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.
 | 
						|
     $         ABS( DN ).LT.TOL*SIGMA ) THEN
 | 
						|
*
 | 
						|
*        Convergence hidden by negative DN.
 | 
						|
*
 | 
						|
         Z( 4*( N0-1 )-PP+2 ) = ZERO
 | 
						|
         DMIN = ZERO
 | 
						|
         GO TO 90
 | 
						|
      ELSE IF( DMIN.LT.ZERO ) THEN
 | 
						|
*
 | 
						|
*        TAU too big. Select new TAU and try again.
 | 
						|
*
 | 
						|
         NFAIL = NFAIL + 1
 | 
						|
         IF( TTYPE.LT.-22 ) THEN
 | 
						|
*
 | 
						|
*           Failed twice. Play it safe.
 | 
						|
*
 | 
						|
            TAU = ZERO
 | 
						|
         ELSE IF( DMIN1.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
*           Late failure. Gives excellent shift.
 | 
						|
*
 | 
						|
            TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
 | 
						|
            TTYPE = TTYPE - 11
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Early failure. Divide by 4.
 | 
						|
*
 | 
						|
            TAU = QURTR*TAU
 | 
						|
            TTYPE = TTYPE - 12
 | 
						|
         END IF
 | 
						|
         GO TO 70
 | 
						|
      ELSE IF( DISNAN( DMIN ) ) THEN
 | 
						|
*
 | 
						|
*        NaN.
 | 
						|
*
 | 
						|
         IF( TAU.EQ.ZERO ) THEN
 | 
						|
            GO TO 80
 | 
						|
         ELSE
 | 
						|
            TAU = ZERO
 | 
						|
            GO TO 70
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Possible underflow. Play it safe.
 | 
						|
*
 | 
						|
         GO TO 80
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Risk of underflow.
 | 
						|
*
 | 
						|
   80 CONTINUE
 | 
						|
      CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
 | 
						|
      NDIV = NDIV + ( N0-I0+2 )
 | 
						|
      ITER = ITER + 1
 | 
						|
      TAU = ZERO
 | 
						|
*
 | 
						|
   90 CONTINUE
 | 
						|
      IF( TAU.LT.SIGMA ) THEN
 | 
						|
         DESIG = DESIG + TAU
 | 
						|
         T = SIGMA + DESIG
 | 
						|
         DESIG = DESIG - ( T-SIGMA )
 | 
						|
      ELSE
 | 
						|
         T = SIGMA + TAU
 | 
						|
         DESIG = SIGMA - ( T-TAU ) + DESIG
 | 
						|
      END IF
 | 
						|
      SIGMA = T
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLASQ3
 | 
						|
*
 | 
						|
      END
 |