184 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			184 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLAS2 computes singular values of a 2-by-2 triangular matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLAS2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlas2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlas2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlas2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLAS2( F, G, H, SSMIN, SSMAX )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       DOUBLE PRECISION   F, G, H, SSMAX, SSMIN
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLAS2  computes the singular values of the 2-by-2 matrix
 | 
						|
*>    [  F   G  ]
 | 
						|
*>    [  0   H  ].
 | 
						|
*> On return, SSMIN is the smaller singular value and SSMAX is the
 | 
						|
*> larger singular value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] F
 | 
						|
*> \verbatim
 | 
						|
*>          F is DOUBLE PRECISION
 | 
						|
*>          The (1,1) element of the 2-by-2 matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] G
 | 
						|
*> \verbatim
 | 
						|
*>          G is DOUBLE PRECISION
 | 
						|
*>          The (1,2) element of the 2-by-2 matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is DOUBLE PRECISION
 | 
						|
*>          The (2,2) element of the 2-by-2 matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SSMIN
 | 
						|
*> \verbatim
 | 
						|
*>          SSMIN is DOUBLE PRECISION
 | 
						|
*>          The smaller singular value.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SSMAX
 | 
						|
*> \verbatim
 | 
						|
*>          SSMAX is DOUBLE PRECISION
 | 
						|
*>          The larger singular value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup OTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Barring over/underflow, all output quantities are correct to within
 | 
						|
*>  a few units in the last place (ulps), even in the absence of a guard
 | 
						|
*>  digit in addition/subtraction.
 | 
						|
*>
 | 
						|
*>  In IEEE arithmetic, the code works correctly if one matrix element is
 | 
						|
*>  infinite.
 | 
						|
*>
 | 
						|
*>  Overflow will not occur unless the largest singular value itself
 | 
						|
*>  overflows, or is within a few ulps of overflow. (On machines with
 | 
						|
*>  partial overflow, like the Cray, overflow may occur if the largest
 | 
						|
*>  singular value is within a factor of 2 of overflow.)
 | 
						|
*>
 | 
						|
*>  Underflow is harmless if underflow is gradual. Otherwise, results
 | 
						|
*>  may correspond to a matrix modified by perturbations of size near
 | 
						|
*>  the underflow threshold.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLAS2( F, G, H, SSMIN, SSMAX )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      DOUBLE PRECISION   F, G, H, SSMAX, SSMIN
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  ====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D0 )
 | 
						|
      DOUBLE PRECISION   ONE
 | 
						|
      PARAMETER          ( ONE = 1.0D0 )
 | 
						|
      DOUBLE PRECISION   TWO
 | 
						|
      PARAMETER          ( TWO = 2.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      DOUBLE PRECISION   AS, AT, AU, C, FA, FHMN, FHMX, GA, HA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      FA = ABS( F )
 | 
						|
      GA = ABS( G )
 | 
						|
      HA = ABS( H )
 | 
						|
      FHMN = MIN( FA, HA )
 | 
						|
      FHMX = MAX( FA, HA )
 | 
						|
      IF( FHMN.EQ.ZERO ) THEN
 | 
						|
         SSMIN = ZERO
 | 
						|
         IF( FHMX.EQ.ZERO ) THEN
 | 
						|
            SSMAX = GA
 | 
						|
         ELSE
 | 
						|
            SSMAX = MAX( FHMX, GA )*SQRT( ONE+
 | 
						|
     $              ( MIN( FHMX, GA ) / MAX( FHMX, GA ) )**2 )
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         IF( GA.LT.FHMX ) THEN
 | 
						|
            AS = ONE + FHMN / FHMX
 | 
						|
            AT = ( FHMX-FHMN ) / FHMX
 | 
						|
            AU = ( GA / FHMX )**2
 | 
						|
            C = TWO / ( SQRT( AS*AS+AU )+SQRT( AT*AT+AU ) )
 | 
						|
            SSMIN = FHMN*C
 | 
						|
            SSMAX = FHMX / C
 | 
						|
         ELSE
 | 
						|
            AU = FHMX / GA
 | 
						|
            IF( AU.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*              Avoid possible harmful underflow if exponent range
 | 
						|
*              asymmetric (true SSMIN may not underflow even if
 | 
						|
*              AU underflows)
 | 
						|
*
 | 
						|
               SSMIN = ( FHMN*FHMX ) / GA
 | 
						|
               SSMAX = GA
 | 
						|
            ELSE
 | 
						|
               AS = ONE + FHMN / FHMX
 | 
						|
               AT = ( FHMX-FHMN ) / FHMX
 | 
						|
               C = ONE / ( SQRT( ONE+( AS*AU )**2 )+
 | 
						|
     $             SQRT( ONE+( AT*AU )**2 ) )
 | 
						|
               SSMIN = ( FHMN*C )*AU
 | 
						|
               SSMIN = SSMIN + SSMIN
 | 
						|
               SSMAX = GA / ( C+C )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLAS2
 | 
						|
*
 | 
						|
      END
 |