741 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			741 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLAQR0 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr0.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr0.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr0.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
 | 
						|
*                          ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
 | 
						|
*       LOGICAL            WANTT, WANTZ
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
 | 
						|
*      $                   Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    DLAQR0 computes the eigenvalues of a Hessenberg matrix H
 | 
						|
*>    and, optionally, the matrices T and Z from the Schur decomposition
 | 
						|
*>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
 | 
						|
*>    Schur form), and Z is the orthogonal matrix of Schur vectors.
 | 
						|
*>
 | 
						|
*>    Optionally Z may be postmultiplied into an input orthogonal
 | 
						|
*>    matrix Q so that this routine can give the Schur factorization
 | 
						|
*>    of a matrix A which has been reduced to the Hessenberg form H
 | 
						|
*>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] WANTT
 | 
						|
*> \verbatim
 | 
						|
*>          WANTT is LOGICAL
 | 
						|
*>          = .TRUE. : the full Schur form T is required;
 | 
						|
*>          = .FALSE.: only eigenvalues are required.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WANTZ
 | 
						|
*> \verbatim
 | 
						|
*>          WANTZ is LOGICAL
 | 
						|
*>          = .TRUE. : the matrix of Schur vectors Z is required;
 | 
						|
*>          = .FALSE.: Schur vectors are not required.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           The order of the matrix H.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>           It is assumed that H is already upper triangular in rows
 | 
						|
*>           and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
 | 
						|
*>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
 | 
						|
*>           previous call to DGEBAL, and then passed to DGEHRD when the
 | 
						|
*>           matrix output by DGEBAL is reduced to Hessenberg form.
 | 
						|
*>           Otherwise, ILO and IHI should be set to 1 and N,
 | 
						|
*>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
 | 
						|
*>           If N = 0, then ILO = 1 and IHI = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is DOUBLE PRECISION array, dimension (LDH,N)
 | 
						|
*>           On entry, the upper Hessenberg matrix H.
 | 
						|
*>           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
 | 
						|
*>           the upper quasi-triangular matrix T from the Schur
 | 
						|
*>           decomposition (the Schur form); 2-by-2 diagonal blocks
 | 
						|
*>           (corresponding to complex conjugate pairs of eigenvalues)
 | 
						|
*>           are returned in standard form, with H(i,i) = H(i+1,i+1)
 | 
						|
*>           and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
 | 
						|
*>           .FALSE., then the contents of H are unspecified on exit.
 | 
						|
*>           (The output value of H when INFO > 0 is given under the
 | 
						|
*>           description of INFO below.)
 | 
						|
*>
 | 
						|
*>           This subroutine may explicitly set H(i,j) = 0 for i > j and
 | 
						|
*>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDH
 | 
						|
*> \verbatim
 | 
						|
*>          LDH is INTEGER
 | 
						|
*>           The leading dimension of the array H. LDH >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WR
 | 
						|
*> \verbatim
 | 
						|
*>          WR is DOUBLE PRECISION array, dimension (IHI)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WI
 | 
						|
*> \verbatim
 | 
						|
*>          WI is DOUBLE PRECISION array, dimension (IHI)
 | 
						|
*>           The real and imaginary parts, respectively, of the computed
 | 
						|
*>           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
 | 
						|
*>           and WI(ILO:IHI). If two eigenvalues are computed as a
 | 
						|
*>           complex conjugate pair, they are stored in consecutive
 | 
						|
*>           elements of WR and WI, say the i-th and (i+1)th, with
 | 
						|
*>           WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
 | 
						|
*>           the eigenvalues are stored in the same order as on the
 | 
						|
*>           diagonal of the Schur form returned in H, with
 | 
						|
*>           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
 | 
						|
*>           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
 | 
						|
*>           WI(i+1) = -WI(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ILOZ
 | 
						|
*> \verbatim
 | 
						|
*>          ILOZ is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IHIZ
 | 
						|
*> \verbatim
 | 
						|
*>          IHIZ is INTEGER
 | 
						|
*>           Specify the rows of Z to which transformations must be
 | 
						|
*>           applied if WANTZ is .TRUE..
 | 
						|
*>           1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
 | 
						|
*>           If WANTZ is .FALSE., then Z is not referenced.
 | 
						|
*>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
 | 
						|
*>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
 | 
						|
*>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
 | 
						|
*>           (The output value of Z when INFO > 0 is given under
 | 
						|
*>           the description of INFO below.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>           The leading dimension of the array Z.  if WANTZ is .TRUE.
 | 
						|
*>           then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension LWORK
 | 
						|
*>           On exit, if LWORK = -1, WORK(1) returns an estimate of
 | 
						|
*>           the optimal value for LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>           The dimension of the array WORK.  LWORK >= max(1,N)
 | 
						|
*>           is sufficient, but LWORK typically as large as 6*N may
 | 
						|
*>           be required for optimal performance.  A workspace query
 | 
						|
*>           to determine the optimal workspace size is recommended.
 | 
						|
*>
 | 
						|
*>           If LWORK = -1, then DLAQR0 does a workspace query.
 | 
						|
*>           In this case, DLAQR0 checks the input parameters and
 | 
						|
*>           estimates the optimal workspace size for the given
 | 
						|
*>           values of N, ILO and IHI.  The estimate is returned
 | 
						|
*>           in WORK(1).  No error message related to LWORK is
 | 
						|
*>           issued by XERBLA.  Neither H nor Z are accessed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>             = 0:  successful exit
 | 
						|
*>             > 0:  if INFO = i, DLAQR0 failed to compute all of
 | 
						|
*>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
 | 
						|
*>                and WI contain those eigenvalues which have been
 | 
						|
*>                successfully computed.  (Failures are rare.)
 | 
						|
*>
 | 
						|
*>                If INFO > 0 and WANT is .FALSE., then on exit,
 | 
						|
*>                the remaining unconverged eigenvalues are the eigen-
 | 
						|
*>                values of the upper Hessenberg matrix rows and
 | 
						|
*>                columns ILO through INFO of the final, output
 | 
						|
*>                value of H.
 | 
						|
*>
 | 
						|
*>                If INFO > 0 and WANTT is .TRUE., then on exit
 | 
						|
*>
 | 
						|
*>           (*)  (initial value of H)*U  = U*(final value of H)
 | 
						|
*>
 | 
						|
*>                where U is an orthogonal matrix.  The final
 | 
						|
*>                value of H is upper Hessenberg and quasi-triangular
 | 
						|
*>                in rows and columns INFO+1 through IHI.
 | 
						|
*>
 | 
						|
*>                If INFO > 0 and WANTZ is .TRUE., then on exit
 | 
						|
*>
 | 
						|
*>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
 | 
						|
*>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
 | 
						|
*>
 | 
						|
*>                where U is the orthogonal matrix in (*) (regard-
 | 
						|
*>                less of the value of WANTT.)
 | 
						|
*>
 | 
						|
*>                If INFO > 0 and WANTZ is .FALSE., then Z is not
 | 
						|
*>                accessed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>       Karen Braman and Ralph Byers, Department of Mathematics,
 | 
						|
*>       University of Kansas, USA
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
 | 
						|
*>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
 | 
						|
*>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
 | 
						|
*>       929--947, 2002.
 | 
						|
*> \n
 | 
						|
*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
 | 
						|
*>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
 | 
						|
*>       of Matrix Analysis, volume 23, pages 948--973, 2002.
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
 | 
						|
     $                   ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
 | 
						|
      LOGICAL            WANTT, WANTZ
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
 | 
						|
     $                   Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  ================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
*
 | 
						|
*     ==== Matrices of order NTINY or smaller must be processed by
 | 
						|
*     .    DLAHQR because of insufficient subdiagonal scratch space.
 | 
						|
*     .    (This is a hard limit.) ====
 | 
						|
      INTEGER            NTINY
 | 
						|
      PARAMETER          ( NTINY = 15 )
 | 
						|
*
 | 
						|
*     ==== Exceptional deflation windows:  try to cure rare
 | 
						|
*     .    slow convergence by varying the size of the
 | 
						|
*     .    deflation window after KEXNW iterations. ====
 | 
						|
      INTEGER            KEXNW
 | 
						|
      PARAMETER          ( KEXNW = 5 )
 | 
						|
*
 | 
						|
*     ==== Exceptional shifts: try to cure rare slow convergence
 | 
						|
*     .    with ad-hoc exceptional shifts every KEXSH iterations.
 | 
						|
*     .    ====
 | 
						|
      INTEGER            KEXSH
 | 
						|
      PARAMETER          ( KEXSH = 6 )
 | 
						|
*
 | 
						|
*     ==== The constants WILK1 and WILK2 are used to form the
 | 
						|
*     .    exceptional shifts. ====
 | 
						|
      DOUBLE PRECISION   WILK1, WILK2
 | 
						|
      PARAMETER          ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      DOUBLE PRECISION   AA, BB, CC, CS, DD, SN, SS, SWAP
 | 
						|
      INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
 | 
						|
     $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
 | 
						|
     $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
 | 
						|
     $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
 | 
						|
      LOGICAL            SORTED
 | 
						|
      CHARACTER          JBCMPZ*2
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      DOUBLE PRECISION   ZDUM( 1, 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLACPY, DLAHQR, DLANV2, DLAQR3, DLAQR4, DLAQR5
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     ==== Quick return for N = 0: nothing to do. ====
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = ONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( N.LE.NTINY ) THEN
 | 
						|
*
 | 
						|
*        ==== Tiny matrices must use DLAHQR. ====
 | 
						|
*
 | 
						|
         LWKOPT = 1
 | 
						|
         IF( LWORK.NE.-1 )
 | 
						|
     $      CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
 | 
						|
     $                   ILOZ, IHIZ, Z, LDZ, INFO )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        ==== Use small bulge multi-shift QR with aggressive early
 | 
						|
*        .    deflation on larger-than-tiny matrices. ====
 | 
						|
*
 | 
						|
*        ==== Hope for the best. ====
 | 
						|
*
 | 
						|
         INFO = 0
 | 
						|
*
 | 
						|
*        ==== Set up job flags for ILAENV. ====
 | 
						|
*
 | 
						|
         IF( WANTT ) THEN
 | 
						|
            JBCMPZ( 1: 1 ) = 'S'
 | 
						|
         ELSE
 | 
						|
            JBCMPZ( 1: 1 ) = 'E'
 | 
						|
         END IF
 | 
						|
         IF( WANTZ ) THEN
 | 
						|
            JBCMPZ( 2: 2 ) = 'V'
 | 
						|
         ELSE
 | 
						|
            JBCMPZ( 2: 2 ) = 'N'
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        ==== NWR = recommended deflation window size.  At this
 | 
						|
*        .    point,  N .GT. NTINY = 15, so there is enough
 | 
						|
*        .    subdiagonal workspace for NWR.GE.2 as required.
 | 
						|
*        .    (In fact, there is enough subdiagonal space for
 | 
						|
*        .    NWR.GE.4.) ====
 | 
						|
*
 | 
						|
         NWR = ILAENV( 13, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
 | 
						|
         NWR = MAX( 2, NWR )
 | 
						|
         NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
 | 
						|
*
 | 
						|
*        ==== NSR = recommended number of simultaneous shifts.
 | 
						|
*        .    At this point N .GT. NTINY = 15, so there is at
 | 
						|
*        .    enough subdiagonal workspace for NSR to be even
 | 
						|
*        .    and greater than or equal to two as required. ====
 | 
						|
*
 | 
						|
         NSR = ILAENV( 15, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
 | 
						|
         NSR = MIN( NSR, ( N-3 ) / 6, IHI-ILO )
 | 
						|
         NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
 | 
						|
*
 | 
						|
*        ==== Estimate optimal workspace ====
 | 
						|
*
 | 
						|
*        ==== Workspace query call to DLAQR3 ====
 | 
						|
*
 | 
						|
         CALL DLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
 | 
						|
     $                IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
 | 
						|
     $                N, H, LDH, WORK, -1 )
 | 
						|
*
 | 
						|
*        ==== Optimal workspace = MAX(DLAQR5, DLAQR3) ====
 | 
						|
*
 | 
						|
         LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
 | 
						|
*
 | 
						|
*        ==== Quick return in case of workspace query. ====
 | 
						|
*
 | 
						|
         IF( LWORK.EQ.-1 ) THEN
 | 
						|
            WORK( 1 ) = DBLE( LWKOPT )
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        ==== DLAHQR/DLAQR0 crossover point ====
 | 
						|
*
 | 
						|
         NMIN = ILAENV( 12, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
 | 
						|
         NMIN = MAX( NTINY, NMIN )
 | 
						|
*
 | 
						|
*        ==== Nibble crossover point ====
 | 
						|
*
 | 
						|
         NIBBLE = ILAENV( 14, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
 | 
						|
         NIBBLE = MAX( 0, NIBBLE )
 | 
						|
*
 | 
						|
*        ==== Accumulate reflections during ttswp?  Use block
 | 
						|
*        .    2-by-2 structure during matrix-matrix multiply? ====
 | 
						|
*
 | 
						|
         KACC22 = ILAENV( 16, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
 | 
						|
         KACC22 = MAX( 0, KACC22 )
 | 
						|
         KACC22 = MIN( 2, KACC22 )
 | 
						|
*
 | 
						|
*        ==== NWMAX = the largest possible deflation window for
 | 
						|
*        .    which there is sufficient workspace. ====
 | 
						|
*
 | 
						|
         NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
 | 
						|
         NW = NWMAX
 | 
						|
*
 | 
						|
*        ==== NSMAX = the Largest number of simultaneous shifts
 | 
						|
*        .    for which there is sufficient workspace. ====
 | 
						|
*
 | 
						|
         NSMAX = MIN( ( N-3 ) / 6, 2*LWORK / 3 )
 | 
						|
         NSMAX = NSMAX - MOD( NSMAX, 2 )
 | 
						|
*
 | 
						|
*        ==== NDFL: an iteration count restarted at deflation. ====
 | 
						|
*
 | 
						|
         NDFL = 1
 | 
						|
*
 | 
						|
*        ==== ITMAX = iteration limit ====
 | 
						|
*
 | 
						|
         ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
 | 
						|
*
 | 
						|
*        ==== Last row and column in the active block ====
 | 
						|
*
 | 
						|
         KBOT = IHI
 | 
						|
*
 | 
						|
*        ==== Main Loop ====
 | 
						|
*
 | 
						|
         DO 80 IT = 1, ITMAX
 | 
						|
*
 | 
						|
*           ==== Done when KBOT falls below ILO ====
 | 
						|
*
 | 
						|
            IF( KBOT.LT.ILO )
 | 
						|
     $         GO TO 90
 | 
						|
*
 | 
						|
*           ==== Locate active block ====
 | 
						|
*
 | 
						|
            DO 10 K = KBOT, ILO + 1, -1
 | 
						|
               IF( H( K, K-1 ).EQ.ZERO )
 | 
						|
     $            GO TO 20
 | 
						|
   10       CONTINUE
 | 
						|
            K = ILO
 | 
						|
   20       CONTINUE
 | 
						|
            KTOP = K
 | 
						|
*
 | 
						|
*           ==== Select deflation window size:
 | 
						|
*           .    Typical Case:
 | 
						|
*           .      If possible and advisable, nibble the entire
 | 
						|
*           .      active block.  If not, use size MIN(NWR,NWMAX)
 | 
						|
*           .      or MIN(NWR+1,NWMAX) depending upon which has
 | 
						|
*           .      the smaller corresponding subdiagonal entry
 | 
						|
*           .      (a heuristic).
 | 
						|
*           .
 | 
						|
*           .    Exceptional Case:
 | 
						|
*           .      If there have been no deflations in KEXNW or
 | 
						|
*           .      more iterations, then vary the deflation window
 | 
						|
*           .      size.   At first, because, larger windows are,
 | 
						|
*           .      in general, more powerful than smaller ones,
 | 
						|
*           .      rapidly increase the window to the maximum possible.
 | 
						|
*           .      Then, gradually reduce the window size. ====
 | 
						|
*
 | 
						|
            NH = KBOT - KTOP + 1
 | 
						|
            NWUPBD = MIN( NH, NWMAX )
 | 
						|
            IF( NDFL.LT.KEXNW ) THEN
 | 
						|
               NW = MIN( NWUPBD, NWR )
 | 
						|
            ELSE
 | 
						|
               NW = MIN( NWUPBD, 2*NW )
 | 
						|
            END IF
 | 
						|
            IF( NW.LT.NWMAX ) THEN
 | 
						|
               IF( NW.GE.NH-1 ) THEN
 | 
						|
                  NW = NH
 | 
						|
               ELSE
 | 
						|
                  KWTOP = KBOT - NW + 1
 | 
						|
                  IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
 | 
						|
     $                ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            IF( NDFL.LT.KEXNW ) THEN
 | 
						|
               NDEC = -1
 | 
						|
            ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
 | 
						|
               NDEC = NDEC + 1
 | 
						|
               IF( NW-NDEC.LT.2 )
 | 
						|
     $            NDEC = 0
 | 
						|
               NW = NW - NDEC
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           ==== Aggressive early deflation:
 | 
						|
*           .    split workspace under the subdiagonal into
 | 
						|
*           .      - an nw-by-nw work array V in the lower
 | 
						|
*           .        left-hand-corner,
 | 
						|
*           .      - an NW-by-at-least-NW-but-more-is-better
 | 
						|
*           .        (NW-by-NHO) horizontal work array along
 | 
						|
*           .        the bottom edge,
 | 
						|
*           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
 | 
						|
*           .        vertical work array along the left-hand-edge.
 | 
						|
*           .        ====
 | 
						|
*
 | 
						|
            KV = N - NW + 1
 | 
						|
            KT = NW + 1
 | 
						|
            NHO = ( N-NW-1 ) - KT + 1
 | 
						|
            KWV = NW + 2
 | 
						|
            NVE = ( N-NW ) - KWV + 1
 | 
						|
*
 | 
						|
*           ==== Aggressive early deflation ====
 | 
						|
*
 | 
						|
            CALL DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
 | 
						|
     $                   IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
 | 
						|
     $                   NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
 | 
						|
     $                   WORK, LWORK )
 | 
						|
*
 | 
						|
*           ==== Adjust KBOT accounting for new deflations. ====
 | 
						|
*
 | 
						|
            KBOT = KBOT - LD
 | 
						|
*
 | 
						|
*           ==== KS points to the shifts. ====
 | 
						|
*
 | 
						|
            KS = KBOT - LS + 1
 | 
						|
*
 | 
						|
*           ==== Skip an expensive QR sweep if there is a (partly
 | 
						|
*           .    heuristic) reason to expect that many eigenvalues
 | 
						|
*           .    will deflate without it.  Here, the QR sweep is
 | 
						|
*           .    skipped if many eigenvalues have just been deflated
 | 
						|
*           .    or if the remaining active block is small.
 | 
						|
*
 | 
						|
            IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
 | 
						|
     $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
 | 
						|
*
 | 
						|
*              ==== NS = nominal number of simultaneous shifts.
 | 
						|
*              .    This may be lowered (slightly) if DLAQR3
 | 
						|
*              .    did not provide that many shifts. ====
 | 
						|
*
 | 
						|
               NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
 | 
						|
               NS = NS - MOD( NS, 2 )
 | 
						|
*
 | 
						|
*              ==== If there have been no deflations
 | 
						|
*              .    in a multiple of KEXSH iterations,
 | 
						|
*              .    then try exceptional shifts.
 | 
						|
*              .    Otherwise use shifts provided by
 | 
						|
*              .    DLAQR3 above or from the eigenvalues
 | 
						|
*              .    of a trailing principal submatrix. ====
 | 
						|
*
 | 
						|
               IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
 | 
						|
                  KS = KBOT - NS + 1
 | 
						|
                  DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
 | 
						|
                     SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
 | 
						|
                     AA = WILK1*SS + H( I, I )
 | 
						|
                     BB = SS
 | 
						|
                     CC = WILK2*SS
 | 
						|
                     DD = AA
 | 
						|
                     CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
 | 
						|
     $                            WR( I ), WI( I ), CS, SN )
 | 
						|
   30             CONTINUE
 | 
						|
                  IF( KS.EQ.KTOP ) THEN
 | 
						|
                     WR( KS+1 ) = H( KS+1, KS+1 )
 | 
						|
                     WI( KS+1 ) = ZERO
 | 
						|
                     WR( KS ) = WR( KS+1 )
 | 
						|
                     WI( KS ) = WI( KS+1 )
 | 
						|
                  END IF
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 ==== Got NS/2 or fewer shifts? Use DLAQR4 or
 | 
						|
*                 .    DLAHQR on a trailing principal submatrix to
 | 
						|
*                 .    get more. (Since NS.LE.NSMAX.LE.(N-3)/6,
 | 
						|
*                 .    there is enough space below the subdiagonal
 | 
						|
*                 .    to fit an NS-by-NS scratch array.) ====
 | 
						|
*
 | 
						|
                  IF( KBOT-KS+1.LE.NS / 2 ) THEN
 | 
						|
                     KS = KBOT - NS + 1
 | 
						|
                     KT = N - NS + 1
 | 
						|
                     CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH,
 | 
						|
     $                            H( KT, 1 ), LDH )
 | 
						|
                     IF( NS.GT.NMIN ) THEN
 | 
						|
                        CALL DLAQR4( .false., .false., NS, 1, NS,
 | 
						|
     $                               H( KT, 1 ), LDH, WR( KS ),
 | 
						|
     $                               WI( KS ), 1, 1, ZDUM, 1, WORK,
 | 
						|
     $                               LWORK, INF )
 | 
						|
                     ELSE
 | 
						|
                        CALL DLAHQR( .false., .false., NS, 1, NS,
 | 
						|
     $                               H( KT, 1 ), LDH, WR( KS ),
 | 
						|
     $                               WI( KS ), 1, 1, ZDUM, 1, INF )
 | 
						|
                     END IF
 | 
						|
                     KS = KS + INF
 | 
						|
*
 | 
						|
*                    ==== In case of a rare QR failure use
 | 
						|
*                    .    eigenvalues of the trailing 2-by-2
 | 
						|
*                    .    principal submatrix.  ====
 | 
						|
*
 | 
						|
                     IF( KS.GE.KBOT ) THEN
 | 
						|
                        AA = H( KBOT-1, KBOT-1 )
 | 
						|
                        CC = H( KBOT, KBOT-1 )
 | 
						|
                        BB = H( KBOT-1, KBOT )
 | 
						|
                        DD = H( KBOT, KBOT )
 | 
						|
                        CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
 | 
						|
     $                               WI( KBOT-1 ), WR( KBOT ),
 | 
						|
     $                               WI( KBOT ), CS, SN )
 | 
						|
                        KS = KBOT - 1
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( KBOT-KS+1.GT.NS ) THEN
 | 
						|
*
 | 
						|
*                    ==== Sort the shifts (Helps a little)
 | 
						|
*                    .    Bubble sort keeps complex conjugate
 | 
						|
*                    .    pairs together. ====
 | 
						|
*
 | 
						|
                     SORTED = .false.
 | 
						|
                     DO 50 K = KBOT, KS + 1, -1
 | 
						|
                        IF( SORTED )
 | 
						|
     $                     GO TO 60
 | 
						|
                        SORTED = .true.
 | 
						|
                        DO 40 I = KS, K - 1
 | 
						|
                           IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
 | 
						|
     $                         ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
 | 
						|
                              SORTED = .false.
 | 
						|
*
 | 
						|
                              SWAP = WR( I )
 | 
						|
                              WR( I ) = WR( I+1 )
 | 
						|
                              WR( I+1 ) = SWAP
 | 
						|
*
 | 
						|
                              SWAP = WI( I )
 | 
						|
                              WI( I ) = WI( I+1 )
 | 
						|
                              WI( I+1 ) = SWAP
 | 
						|
                           END IF
 | 
						|
   40                   CONTINUE
 | 
						|
   50                CONTINUE
 | 
						|
   60                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 ==== Shuffle shifts into pairs of real shifts
 | 
						|
*                 .    and pairs of complex conjugate shifts
 | 
						|
*                 .    assuming complex conjugate shifts are
 | 
						|
*                 .    already adjacent to one another. (Yes,
 | 
						|
*                 .    they are.)  ====
 | 
						|
*
 | 
						|
                  DO 70 I = KBOT, KS + 2, -2
 | 
						|
                     IF( WI( I ).NE.-WI( I-1 ) ) THEN
 | 
						|
*
 | 
						|
                        SWAP = WR( I )
 | 
						|
                        WR( I ) = WR( I-1 )
 | 
						|
                        WR( I-1 ) = WR( I-2 )
 | 
						|
                        WR( I-2 ) = SWAP
 | 
						|
*
 | 
						|
                        SWAP = WI( I )
 | 
						|
                        WI( I ) = WI( I-1 )
 | 
						|
                        WI( I-1 ) = WI( I-2 )
 | 
						|
                        WI( I-2 ) = SWAP
 | 
						|
                     END IF
 | 
						|
   70             CONTINUE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              ==== If there are only two shifts and both are
 | 
						|
*              .    real, then use only one.  ====
 | 
						|
*
 | 
						|
               IF( KBOT-KS+1.EQ.2 ) THEN
 | 
						|
                  IF( WI( KBOT ).EQ.ZERO ) THEN
 | 
						|
                     IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
 | 
						|
     $                   ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
 | 
						|
                        WR( KBOT-1 ) = WR( KBOT )
 | 
						|
                     ELSE
 | 
						|
                        WR( KBOT ) = WR( KBOT-1 )
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              ==== Use up to NS of the the smallest magnitude
 | 
						|
*              .    shifts.  If there aren't NS shifts available,
 | 
						|
*              .    then use them all, possibly dropping one to
 | 
						|
*              .    make the number of shifts even. ====
 | 
						|
*
 | 
						|
               NS = MIN( NS, KBOT-KS+1 )
 | 
						|
               NS = NS - MOD( NS, 2 )
 | 
						|
               KS = KBOT - NS + 1
 | 
						|
*
 | 
						|
*              ==== Small-bulge multi-shift QR sweep:
 | 
						|
*              .    split workspace under the subdiagonal into
 | 
						|
*              .    - a KDU-by-KDU work array U in the lower
 | 
						|
*              .      left-hand-corner,
 | 
						|
*              .    - a KDU-by-at-least-KDU-but-more-is-better
 | 
						|
*              .      (KDU-by-NHo) horizontal work array WH along
 | 
						|
*              .      the bottom edge,
 | 
						|
*              .    - and an at-least-KDU-but-more-is-better-by-KDU
 | 
						|
*              .      (NVE-by-KDU) vertical work WV arrow along
 | 
						|
*              .      the left-hand-edge. ====
 | 
						|
*
 | 
						|
               KDU = 2*NS
 | 
						|
               KU = N - KDU + 1
 | 
						|
               KWH = KDU + 1
 | 
						|
               NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
 | 
						|
               KWV = KDU + 4
 | 
						|
               NVE = N - KDU - KWV + 1
 | 
						|
*
 | 
						|
*              ==== Small-bulge multi-shift QR sweep ====
 | 
						|
*
 | 
						|
               CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
 | 
						|
     $                      WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
 | 
						|
     $                      LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
 | 
						|
     $                      H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           ==== Note progress (or the lack of it). ====
 | 
						|
*
 | 
						|
            IF( LD.GT.0 ) THEN
 | 
						|
               NDFL = 1
 | 
						|
            ELSE
 | 
						|
               NDFL = NDFL + 1
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           ==== End of main loop ====
 | 
						|
   80    CONTINUE
 | 
						|
*
 | 
						|
*        ==== Iteration limit exceeded.  Set INFO to show where
 | 
						|
*        .    the problem occurred and exit. ====
 | 
						|
*
 | 
						|
         INFO = KBOT
 | 
						|
   90    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     ==== Return the optimal value of LWORK. ====
 | 
						|
*
 | 
						|
      WORK( 1 ) = DBLE( LWKOPT )
 | 
						|
*
 | 
						|
*     ==== End of DLAQR0 ====
 | 
						|
*
 | 
						|
      END
 |