359 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			359 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLAQPS + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqps.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqps.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqps.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
 | 
						|
*                          VN2, AUXV, F, LDF )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            JPVT( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
 | 
						|
*      $                   VN1( * ), VN2( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLAQPS computes a step of QR factorization with column pivoting
 | 
						|
*> of a real M-by-N matrix A by using Blas-3.  It tries to factorize
 | 
						|
*> NB columns from A starting from the row OFFSET+1, and updates all
 | 
						|
*> of the matrix with Blas-3 xGEMM.
 | 
						|
*>
 | 
						|
*> In some cases, due to catastrophic cancellations, it cannot
 | 
						|
*> factorize NB columns.  Hence, the actual number of factorized
 | 
						|
*> columns is returned in KB.
 | 
						|
*>
 | 
						|
*> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A. N >= 0
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] OFFSET
 | 
						|
*> \verbatim
 | 
						|
*>          OFFSET is INTEGER
 | 
						|
*>          The number of rows of A that have been factorized in
 | 
						|
*>          previous steps.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB
 | 
						|
*> \verbatim
 | 
						|
*>          NB is INTEGER
 | 
						|
*>          The number of columns to factorize.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] KB
 | 
						|
*> \verbatim
 | 
						|
*>          KB is INTEGER
 | 
						|
*>          The number of columns actually factorized.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, block A(OFFSET+1:M,1:KB) is the triangular
 | 
						|
*>          factor obtained and block A(1:OFFSET,1:N) has been
 | 
						|
*>          accordingly pivoted, but no factorized.
 | 
						|
*>          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
 | 
						|
*>          been updated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] JPVT
 | 
						|
*> \verbatim
 | 
						|
*>          JPVT is INTEGER array, dimension (N)
 | 
						|
*>          JPVT(I) = K <==> Column K of the full matrix A has been
 | 
						|
*>          permuted into position I in AP.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is DOUBLE PRECISION array, dimension (KB)
 | 
						|
*>          The scalar factors of the elementary reflectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VN1
 | 
						|
*> \verbatim
 | 
						|
*>          VN1 is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The vector with the partial column norms.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VN2
 | 
						|
*> \verbatim
 | 
						|
*>          VN2 is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The vector with the exact column norms.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AUXV
 | 
						|
*> \verbatim
 | 
						|
*>          AUXV is DOUBLE PRECISION array, dimension (NB)
 | 
						|
*>          Auxiliary vector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] F
 | 
						|
*> \verbatim
 | 
						|
*>          F is DOUBLE PRECISION array, dimension (LDF,NB)
 | 
						|
*>          Matrix F**T = L*Y**T*A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDF
 | 
						|
*> \verbatim
 | 
						|
*>          LDF is INTEGER
 | 
						|
*>          The leading dimension of the array F. LDF >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
 | 
						|
*>    X. Sun, Computer Science Dept., Duke University, USA
 | 
						|
*> \n
 | 
						|
*>  Partial column norm updating strategy modified on April 2011
 | 
						|
*>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
 | 
						|
*>    University of Zagreb, Croatia.
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*> LAPACK Working Note 176
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
 | 
						|
     $                   VN2, AUXV, F, LDF )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            JPVT( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
 | 
						|
     $                   VN1( * ), VN2( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            ITEMP, J, K, LASTRK, LSTICC, PVT, RK
 | 
						|
      DOUBLE PRECISION   AKK, TEMP, TEMP2, TOL3Z
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM, DGEMV, DLARFG, DSWAP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, MAX, MIN, NINT, SQRT
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH, DNRM2
 | 
						|
      EXTERNAL           IDAMAX, DLAMCH, DNRM2
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      LASTRK = MIN( M, N+OFFSET )
 | 
						|
      LSTICC = 0
 | 
						|
      K = 0
 | 
						|
      TOL3Z = SQRT(DLAMCH('Epsilon'))
 | 
						|
*
 | 
						|
*     Beginning of while loop.
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
 | 
						|
         K = K + 1
 | 
						|
         RK = OFFSET + K
 | 
						|
*
 | 
						|
*        Determine ith pivot column and swap if necessary
 | 
						|
*
 | 
						|
         PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
 | 
						|
         IF( PVT.NE.K ) THEN
 | 
						|
            CALL DSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
 | 
						|
            CALL DSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
 | 
						|
            ITEMP = JPVT( PVT )
 | 
						|
            JPVT( PVT ) = JPVT( K )
 | 
						|
            JPVT( K ) = ITEMP
 | 
						|
            VN1( PVT ) = VN1( K )
 | 
						|
            VN2( PVT ) = VN2( K )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Apply previous Householder reflectors to column K:
 | 
						|
*        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**T.
 | 
						|
*
 | 
						|
         IF( K.GT.1 ) THEN
 | 
						|
            CALL DGEMV( 'No transpose', M-RK+1, K-1, -ONE, A( RK, 1 ),
 | 
						|
     $                  LDA, F( K, 1 ), LDF, ONE, A( RK, K ), 1 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Generate elementary reflector H(k).
 | 
						|
*
 | 
						|
         IF( RK.LT.M ) THEN
 | 
						|
            CALL DLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
 | 
						|
         ELSE
 | 
						|
            CALL DLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         AKK = A( RK, K )
 | 
						|
         A( RK, K ) = ONE
 | 
						|
*
 | 
						|
*        Compute Kth column of F:
 | 
						|
*
 | 
						|
*        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**T*A(RK:M,K).
 | 
						|
*
 | 
						|
         IF( K.LT.N ) THEN
 | 
						|
            CALL DGEMV( 'Transpose', M-RK+1, N-K, TAU( K ),
 | 
						|
     $                  A( RK, K+1 ), LDA, A( RK, K ), 1, ZERO,
 | 
						|
     $                  F( K+1, K ), 1 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Padding F(1:K,K) with zeros.
 | 
						|
*
 | 
						|
         DO 20 J = 1, K
 | 
						|
            F( J, K ) = ZERO
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
*        Incremental updating of F:
 | 
						|
*        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**T
 | 
						|
*                    *A(RK:M,K).
 | 
						|
*
 | 
						|
         IF( K.GT.1 ) THEN
 | 
						|
            CALL DGEMV( 'Transpose', M-RK+1, K-1, -TAU( K ), A( RK, 1 ),
 | 
						|
     $                  LDA, A( RK, K ), 1, ZERO, AUXV( 1 ), 1 )
 | 
						|
*
 | 
						|
            CALL DGEMV( 'No transpose', N, K-1, ONE, F( 1, 1 ), LDF,
 | 
						|
     $                  AUXV( 1 ), 1, ONE, F( 1, K ), 1 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Update the current row of A:
 | 
						|
*        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**T.
 | 
						|
*
 | 
						|
         IF( K.LT.N ) THEN
 | 
						|
            CALL DGEMV( 'No transpose', N-K, K, -ONE, F( K+1, 1 ), LDF,
 | 
						|
     $                  A( RK, 1 ), LDA, ONE, A( RK, K+1 ), LDA )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Update partial column norms.
 | 
						|
*
 | 
						|
         IF( RK.LT.LASTRK ) THEN
 | 
						|
            DO 30 J = K + 1, N
 | 
						|
               IF( VN1( J ).NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*                 NOTE: The following 4 lines follow from the analysis in
 | 
						|
*                 Lapack Working Note 176.
 | 
						|
*
 | 
						|
                  TEMP = ABS( A( RK, J ) ) / VN1( J )
 | 
						|
                  TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
 | 
						|
                  TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
 | 
						|
                  IF( TEMP2 .LE. TOL3Z ) THEN
 | 
						|
                     VN2( J ) = DBLE( LSTICC )
 | 
						|
                     LSTICC = J
 | 
						|
                  ELSE
 | 
						|
                     VN1( J ) = VN1( J )*SQRT( TEMP )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
   30       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         A( RK, K ) = AKK
 | 
						|
*
 | 
						|
*        End of while loop.
 | 
						|
*
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
      KB = K
 | 
						|
      RK = OFFSET + KB
 | 
						|
*
 | 
						|
*     Apply the block reflector to the rest of the matrix:
 | 
						|
*     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
 | 
						|
*                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**T.
 | 
						|
*
 | 
						|
      IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
 | 
						|
         CALL DGEMM( 'No transpose', 'Transpose', M-RK, N-KB, KB, -ONE,
 | 
						|
     $               A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, ONE,
 | 
						|
     $               A( RK+1, KB+1 ), LDA )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Recomputation of difficult columns.
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
      IF( LSTICC.GT.0 ) THEN
 | 
						|
         ITEMP = NINT( VN2( LSTICC ) )
 | 
						|
         VN1( LSTICC ) = DNRM2( M-RK, A( RK+1, LSTICC ), 1 )
 | 
						|
*
 | 
						|
*        NOTE: The computation of VN1( LSTICC ) relies on the fact that
 | 
						|
*        SNRM2 does not fail on vectors with norm below the value of
 | 
						|
*        SQRT(DLAMCH('S'))
 | 
						|
*
 | 
						|
         VN2( LSTICC ) = VN1( LSTICC )
 | 
						|
         LSTICC = ITEMP
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLAQPS
 | 
						|
*
 | 
						|
      END
 |