475 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			475 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGTRFS
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DGTRFS + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtrfs.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtrfs.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtrfs.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
 | 
						|
*                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
 | 
						|
*                          INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANS
 | 
						|
*       INTEGER            INFO, LDB, LDX, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * ), IWORK( * )
 | 
						|
*       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
 | 
						|
*      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
 | 
						|
*      $                   FERR( * ), WORK( * ), X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGTRFS improves the computed solution to a system of linear
 | 
						|
*> equations when the coefficient matrix is tridiagonal, and provides
 | 
						|
*> error bounds and backward error estimates for the solution.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          Specifies the form of the system of equations:
 | 
						|
*>          = 'N':  A * X = B     (No transpose)
 | 
						|
*>          = 'T':  A**T * X = B  (Transpose)
 | 
						|
*>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DL
 | 
						|
*> \verbatim
 | 
						|
*>          DL is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The (n-1) subdiagonal elements of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The diagonal elements of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DU
 | 
						|
*> \verbatim
 | 
						|
*>          DU is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The (n-1) superdiagonal elements of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DLF
 | 
						|
*> \verbatim
 | 
						|
*>          DLF is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The (n-1) multipliers that define the matrix L from the
 | 
						|
*>          LU factorization of A as computed by DGTTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DF
 | 
						|
*> \verbatim
 | 
						|
*>          DF is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The n diagonal elements of the upper triangular matrix U from
 | 
						|
*>          the LU factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DUF
 | 
						|
*> \verbatim
 | 
						|
*>          DUF is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The (n-1) elements of the first superdiagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DU2
 | 
						|
*> \verbatim
 | 
						|
*>          DU2 is DOUBLE PRECISION array, dimension (N-2)
 | 
						|
*>          The (n-2) elements of the second superdiagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices; for 1 <= i <= n, row i of the matrix was
 | 
						|
*>          interchanged with row IPIV(i).  IPIV(i) will always be either
 | 
						|
*>          i or i+1; IPIV(i) = i indicates a row interchange was not
 | 
						|
*>          required.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | 
						|
*>          The right hand side matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | 
						|
*>          On entry, the solution matrix X, as computed by DGTTRS.
 | 
						|
*>          On exit, the improved solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] FERR
 | 
						|
*> \verbatim
 | 
						|
*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
 | 
						|
*>          The estimated forward error bound for each solution vector
 | 
						|
*>          X(j) (the j-th column of the solution matrix X).
 | 
						|
*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
 | 
						|
*>          is an estimated upper bound for the magnitude of the largest
 | 
						|
*>          element in (X(j) - XTRUE) divided by the magnitude of the
 | 
						|
*>          largest element in X(j).  The estimate is as reliable as
 | 
						|
*>          the estimate for RCOND, and is almost always a slight
 | 
						|
*>          overestimate of the true error.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BERR
 | 
						|
*> \verbatim
 | 
						|
*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
 | 
						|
*>          The componentwise relative backward error of each solution
 | 
						|
*>          vector X(j) (i.e., the smallest relative change in
 | 
						|
*>          any element of A or B that makes X(j) an exact solution).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (3*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Internal Parameters:
 | 
						|
*  =========================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>  ITMAX is the maximum number of steps of iterative refinement.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleGTcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
 | 
						|
     $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            INFO, LDB, LDX, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * ), IWORK( * )
 | 
						|
      DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
 | 
						|
     $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
 | 
						|
     $                   FERR( * ), WORK( * ), X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      INTEGER            ITMAX
 | 
						|
      PARAMETER          ( ITMAX = 5 )
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      DOUBLE PRECISION   TWO
 | 
						|
      PARAMETER          ( TWO = 2.0D+0 )
 | 
						|
      DOUBLE PRECISION   THREE
 | 
						|
      PARAMETER          ( THREE = 3.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            NOTRAN
 | 
						|
      CHARACTER          TRANSN, TRANST
 | 
						|
      INTEGER            COUNT, I, J, KASE, NZ
 | 
						|
      DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DAXPY, DCOPY, DGTTRS, DLACN2, DLAGTM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           LSAME, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NOTRAN = LSAME( TRANS, 'N' )
 | 
						|
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
 | 
						|
     $    LSAME( TRANS, 'C' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -13
 | 
						|
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -15
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DGTRFS', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
 | 
						|
         DO 10 J = 1, NRHS
 | 
						|
            FERR( J ) = ZERO
 | 
						|
            BERR( J ) = ZERO
 | 
						|
   10    CONTINUE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( NOTRAN ) THEN
 | 
						|
         TRANSN = 'N'
 | 
						|
         TRANST = 'T'
 | 
						|
      ELSE
 | 
						|
         TRANSN = 'T'
 | 
						|
         TRANST = 'N'
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     NZ = maximum number of nonzero elements in each row of A, plus 1
 | 
						|
*
 | 
						|
      NZ = 4
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      SAFMIN = DLAMCH( 'Safe minimum' )
 | 
						|
      SAFE1 = NZ*SAFMIN
 | 
						|
      SAFE2 = SAFE1 / EPS
 | 
						|
*
 | 
						|
*     Do for each right hand side
 | 
						|
*
 | 
						|
      DO 110 J = 1, NRHS
 | 
						|
*
 | 
						|
         COUNT = 1
 | 
						|
         LSTRES = THREE
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
*        Loop until stopping criterion is satisfied.
 | 
						|
*
 | 
						|
*        Compute residual R = B - op(A) * X,
 | 
						|
*        where op(A) = A, A**T, or A**H, depending on TRANS.
 | 
						|
*
 | 
						|
         CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
 | 
						|
         CALL DLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
 | 
						|
     $                WORK( N+1 ), N )
 | 
						|
*
 | 
						|
*        Compute abs(op(A))*abs(x) + abs(b) for use in the backward
 | 
						|
*        error bound.
 | 
						|
*
 | 
						|
         IF( NOTRAN ) THEN
 | 
						|
            IF( N.EQ.1 ) THEN
 | 
						|
               WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) )
 | 
						|
            ELSE
 | 
						|
               WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) +
 | 
						|
     $                     ABS( DU( 1 )*X( 2, J ) )
 | 
						|
               DO 30 I = 2, N - 1
 | 
						|
                  WORK( I ) = ABS( B( I, J ) ) +
 | 
						|
     $                        ABS( DL( I-1 )*X( I-1, J ) ) +
 | 
						|
     $                        ABS( D( I )*X( I, J ) ) +
 | 
						|
     $                        ABS( DU( I )*X( I+1, J ) )
 | 
						|
   30          CONTINUE
 | 
						|
               WORK( N ) = ABS( B( N, J ) ) +
 | 
						|
     $                     ABS( DL( N-1 )*X( N-1, J ) ) +
 | 
						|
     $                     ABS( D( N )*X( N, J ) )
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IF( N.EQ.1 ) THEN
 | 
						|
               WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) )
 | 
						|
            ELSE
 | 
						|
               WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) +
 | 
						|
     $                     ABS( DL( 1 )*X( 2, J ) )
 | 
						|
               DO 40 I = 2, N - 1
 | 
						|
                  WORK( I ) = ABS( B( I, J ) ) +
 | 
						|
     $                        ABS( DU( I-1 )*X( I-1, J ) ) +
 | 
						|
     $                        ABS( D( I )*X( I, J ) ) +
 | 
						|
     $                        ABS( DL( I )*X( I+1, J ) )
 | 
						|
   40          CONTINUE
 | 
						|
               WORK( N ) = ABS( B( N, J ) ) +
 | 
						|
     $                     ABS( DU( N-1 )*X( N-1, J ) ) +
 | 
						|
     $                     ABS( D( N )*X( N, J ) )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Compute componentwise relative backward error from formula
 | 
						|
*
 | 
						|
*        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
 | 
						|
*
 | 
						|
*        where abs(Z) is the componentwise absolute value of the matrix
 | 
						|
*        or vector Z.  If the i-th component of the denominator is less
 | 
						|
*        than SAFE2, then SAFE1 is added to the i-th components of the
 | 
						|
*        numerator and denominator before dividing.
 | 
						|
*
 | 
						|
         S = ZERO
 | 
						|
         DO 50 I = 1, N
 | 
						|
            IF( WORK( I ).GT.SAFE2 ) THEN
 | 
						|
               S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
 | 
						|
            ELSE
 | 
						|
               S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
 | 
						|
     $             ( WORK( I )+SAFE1 ) )
 | 
						|
            END IF
 | 
						|
   50    CONTINUE
 | 
						|
         BERR( J ) = S
 | 
						|
*
 | 
						|
*        Test stopping criterion. Continue iterating if
 | 
						|
*           1) The residual BERR(J) is larger than machine epsilon, and
 | 
						|
*           2) BERR(J) decreased by at least a factor of 2 during the
 | 
						|
*              last iteration, and
 | 
						|
*           3) At most ITMAX iterations tried.
 | 
						|
*
 | 
						|
         IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
 | 
						|
     $       COUNT.LE.ITMAX ) THEN
 | 
						|
*
 | 
						|
*           Update solution and try again.
 | 
						|
*
 | 
						|
            CALL DGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV,
 | 
						|
     $                   WORK( N+1 ), N, INFO )
 | 
						|
            CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
 | 
						|
            LSTRES = BERR( J )
 | 
						|
            COUNT = COUNT + 1
 | 
						|
            GO TO 20
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Bound error from formula
 | 
						|
*
 | 
						|
*        norm(X - XTRUE) / norm(X) .le. FERR =
 | 
						|
*        norm( abs(inv(op(A)))*
 | 
						|
*           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
 | 
						|
*
 | 
						|
*        where
 | 
						|
*          norm(Z) is the magnitude of the largest component of Z
 | 
						|
*          inv(op(A)) is the inverse of op(A)
 | 
						|
*          abs(Z) is the componentwise absolute value of the matrix or
 | 
						|
*             vector Z
 | 
						|
*          NZ is the maximum number of nonzeros in any row of A, plus 1
 | 
						|
*          EPS is machine epsilon
 | 
						|
*
 | 
						|
*        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
 | 
						|
*        is incremented by SAFE1 if the i-th component of
 | 
						|
*        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
 | 
						|
*
 | 
						|
*        Use DLACN2 to estimate the infinity-norm of the matrix
 | 
						|
*           inv(op(A)) * diag(W),
 | 
						|
*        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
 | 
						|
*
 | 
						|
         DO 60 I = 1, N
 | 
						|
            IF( WORK( I ).GT.SAFE2 ) THEN
 | 
						|
               WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
 | 
						|
            ELSE
 | 
						|
               WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
 | 
						|
            END IF
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
         KASE = 0
 | 
						|
   70    CONTINUE
 | 
						|
         CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
 | 
						|
     $                KASE, ISAVE )
 | 
						|
         IF( KASE.NE.0 ) THEN
 | 
						|
            IF( KASE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              Multiply by diag(W)*inv(op(A)**T).
 | 
						|
*
 | 
						|
               CALL DGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV,
 | 
						|
     $                      WORK( N+1 ), N, INFO )
 | 
						|
               DO 80 I = 1, N
 | 
						|
                  WORK( N+I ) = WORK( I )*WORK( N+I )
 | 
						|
   80          CONTINUE
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Multiply by inv(op(A))*diag(W).
 | 
						|
*
 | 
						|
               DO 90 I = 1, N
 | 
						|
                  WORK( N+I ) = WORK( I )*WORK( N+I )
 | 
						|
   90          CONTINUE
 | 
						|
               CALL DGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV,
 | 
						|
     $                      WORK( N+1 ), N, INFO )
 | 
						|
            END IF
 | 
						|
            GO TO 70
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Normalize error.
 | 
						|
*
 | 
						|
         LSTRES = ZERO
 | 
						|
         DO 100 I = 1, N
 | 
						|
            LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
 | 
						|
  100    CONTINUE
 | 
						|
         IF( LSTRES.NE.ZERO )
 | 
						|
     $      FERR( J ) = FERR( J ) / LSTRES
 | 
						|
*
 | 
						|
  110 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGTRFS
 | 
						|
*
 | 
						|
      END
 |