487 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			487 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CTREVC
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CTREVC + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrevc.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrevc.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrevc.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | 
						|
*                          LDVR, MM, M, WORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          HOWMNY, SIDE
 | 
						|
*       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            SELECT( * )
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CTREVC computes some or all of the right and/or left eigenvectors of
 | 
						|
*> a complex upper triangular matrix T.
 | 
						|
*> Matrices of this type are produced by the Schur factorization of
 | 
						|
*> a complex general matrix:  A = Q*T*Q**H, as computed by CHSEQR.
 | 
						|
*>
 | 
						|
*> The right eigenvector x and the left eigenvector y of T corresponding
 | 
						|
*> to an eigenvalue w are defined by:
 | 
						|
*>
 | 
						|
*>              T*x = w*x,     (y**H)*T = w*(y**H)
 | 
						|
*>
 | 
						|
*> where y**H denotes the conjugate transpose of the vector y.
 | 
						|
*> The eigenvalues are not input to this routine, but are read directly
 | 
						|
*> from the diagonal of T.
 | 
						|
*>
 | 
						|
*> This routine returns the matrices X and/or Y of right and left
 | 
						|
*> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
 | 
						|
*> input matrix.  If Q is the unitary factor that reduces a matrix A to
 | 
						|
*> Schur form T, then Q*X and Q*Y are the matrices of right and left
 | 
						|
*> eigenvectors of A.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'R':  compute right eigenvectors only;
 | 
						|
*>          = 'L':  compute left eigenvectors only;
 | 
						|
*>          = 'B':  compute both right and left eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] HOWMNY
 | 
						|
*> \verbatim
 | 
						|
*>          HOWMNY is CHARACTER*1
 | 
						|
*>          = 'A':  compute all right and/or left eigenvectors;
 | 
						|
*>          = 'B':  compute all right and/or left eigenvectors,
 | 
						|
*>                  backtransformed using the matrices supplied in
 | 
						|
*>                  VR and/or VL;
 | 
						|
*>          = 'S':  compute selected right and/or left eigenvectors,
 | 
						|
*>                  as indicated by the logical array SELECT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SELECT
 | 
						|
*> \verbatim
 | 
						|
*>          SELECT is LOGICAL array, dimension (N)
 | 
						|
*>          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
 | 
						|
*>          computed.
 | 
						|
*>          The eigenvector corresponding to the j-th eigenvalue is
 | 
						|
*>          computed if SELECT(j) = .TRUE..
 | 
						|
*>          Not referenced if HOWMNY = 'A' or 'B'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix T. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is COMPLEX array, dimension (LDT,N)
 | 
						|
*>          The upper triangular matrix T.  T is modified, but restored
 | 
						|
*>          on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T. LDT >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is COMPLEX array, dimension (LDVL,MM)
 | 
						|
*>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
 | 
						|
*>          contain an N-by-N matrix Q (usually the unitary matrix Q of
 | 
						|
*>          Schur vectors returned by CHSEQR).
 | 
						|
*>          On exit, if SIDE = 'L' or 'B', VL contains:
 | 
						|
*>          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
 | 
						|
*>          if HOWMNY = 'B', the matrix Q*Y;
 | 
						|
*>          if HOWMNY = 'S', the left eigenvectors of T specified by
 | 
						|
*>                           SELECT, stored consecutively in the columns
 | 
						|
*>                           of VL, in the same order as their
 | 
						|
*>                           eigenvalues.
 | 
						|
*>          Not referenced if SIDE = 'R'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVL is INTEGER
 | 
						|
*>          The leading dimension of the array VL.  LDVL >= 1, and if
 | 
						|
*>          SIDE = 'L' or 'B', LDVL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VR
 | 
						|
*> \verbatim
 | 
						|
*>          VR is COMPLEX array, dimension (LDVR,MM)
 | 
						|
*>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
 | 
						|
*>          contain an N-by-N matrix Q (usually the unitary matrix Q of
 | 
						|
*>          Schur vectors returned by CHSEQR).
 | 
						|
*>          On exit, if SIDE = 'R' or 'B', VR contains:
 | 
						|
*>          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
 | 
						|
*>          if HOWMNY = 'B', the matrix Q*X;
 | 
						|
*>          if HOWMNY = 'S', the right eigenvectors of T specified by
 | 
						|
*>                           SELECT, stored consecutively in the columns
 | 
						|
*>                           of VR, in the same order as their
 | 
						|
*>                           eigenvalues.
 | 
						|
*>          Not referenced if SIDE = 'L'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVR is INTEGER
 | 
						|
*>          The leading dimension of the array VR.  LDVR >= 1, and if
 | 
						|
*>          SIDE = 'R' or 'B'; LDVR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MM
 | 
						|
*> \verbatim
 | 
						|
*>          MM is INTEGER
 | 
						|
*>          The number of columns in the arrays VL and/or VR. MM >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of columns in the arrays VL and/or VR actually
 | 
						|
*>          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
 | 
						|
*>          is set to N.  Each selected eigenvector occupies one
 | 
						|
*>          column.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The algorithm used in this program is basically backward (forward)
 | 
						|
*>  substitution, with scaling to make the the code robust against
 | 
						|
*>  possible overflow.
 | 
						|
*>
 | 
						|
*>  Each eigenvector is normalized so that the element of largest
 | 
						|
*>  magnitude has magnitude 1; here the magnitude of a complex number
 | 
						|
*>  (x,y) is taken to be |x| + |y|.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | 
						|
     $                   LDVR, MM, M, WORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          HOWMNY, SIDE
 | 
						|
      INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            SELECT( * )
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      COMPLEX            CMZERO, CMONE
 | 
						|
      PARAMETER          ( CMZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   CMONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
 | 
						|
      INTEGER            I, II, IS, J, K, KI
 | 
						|
      REAL               OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
 | 
						|
      COMPLEX            CDUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ICAMAX
 | 
						|
      REAL               SCASUM, SLAMCH
 | 
						|
      EXTERNAL           LSAME, ICAMAX, SCASUM, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CCOPY, CGEMV, CLATRS, CSSCAL, SLABAD, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode and test the input parameters
 | 
						|
*
 | 
						|
      BOTHV = LSAME( SIDE, 'B' )
 | 
						|
      RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
 | 
						|
      LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
 | 
						|
*
 | 
						|
      ALLV = LSAME( HOWMNY, 'A' )
 | 
						|
      OVER = LSAME( HOWMNY, 'B' )
 | 
						|
      SOMEV = LSAME( HOWMNY, 'S' )
 | 
						|
*
 | 
						|
*     Set M to the number of columns required to store the selected
 | 
						|
*     eigenvectors.
 | 
						|
*
 | 
						|
      IF( SOMEV ) THEN
 | 
						|
         M = 0
 | 
						|
         DO 10 J = 1, N
 | 
						|
            IF( SELECT( J ) )
 | 
						|
     $         M = M + 1
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
         M = N
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( MM.LT.M ) THEN
 | 
						|
         INFO = -11
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CTREVC', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Set the constants to control overflow.
 | 
						|
*
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
      OVFL = ONE / UNFL
 | 
						|
      CALL SLABAD( UNFL, OVFL )
 | 
						|
      ULP = SLAMCH( 'Precision' )
 | 
						|
      SMLNUM = UNFL*( N / ULP )
 | 
						|
*
 | 
						|
*     Store the diagonal elements of T in working array WORK.
 | 
						|
*
 | 
						|
      DO 20 I = 1, N
 | 
						|
         WORK( I+N ) = T( I, I )
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
*     Compute 1-norm of each column of strictly upper triangular
 | 
						|
*     part of T to control overflow in triangular solver.
 | 
						|
*
 | 
						|
      RWORK( 1 ) = ZERO
 | 
						|
      DO 30 J = 2, N
 | 
						|
         RWORK( J ) = SCASUM( J-1, T( 1, J ), 1 )
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
      IF( RIGHTV ) THEN
 | 
						|
*
 | 
						|
*        Compute right eigenvectors.
 | 
						|
*
 | 
						|
         IS = M
 | 
						|
         DO 80 KI = N, 1, -1
 | 
						|
*
 | 
						|
            IF( SOMEV ) THEN
 | 
						|
               IF( .NOT.SELECT( KI ) )
 | 
						|
     $            GO TO 80
 | 
						|
            END IF
 | 
						|
            SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
 | 
						|
*
 | 
						|
            WORK( 1 ) = CMONE
 | 
						|
*
 | 
						|
*           Form right-hand side.
 | 
						|
*
 | 
						|
            DO 40 K = 1, KI - 1
 | 
						|
               WORK( K ) = -T( K, KI )
 | 
						|
   40       CONTINUE
 | 
						|
*
 | 
						|
*           Solve the triangular system:
 | 
						|
*              (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
 | 
						|
*
 | 
						|
            DO 50 K = 1, KI - 1
 | 
						|
               T( K, K ) = T( K, K ) - T( KI, KI )
 | 
						|
               IF( CABS1( T( K, K ) ).LT.SMIN )
 | 
						|
     $            T( K, K ) = SMIN
 | 
						|
   50       CONTINUE
 | 
						|
*
 | 
						|
            IF( KI.GT.1 ) THEN
 | 
						|
               CALL CLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
 | 
						|
     $                      KI-1, T, LDT, WORK( 1 ), SCALE, RWORK,
 | 
						|
     $                      INFO )
 | 
						|
               WORK( KI ) = SCALE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Copy the vector x or Q*x to VR and normalize.
 | 
						|
*
 | 
						|
            IF( .NOT.OVER ) THEN
 | 
						|
               CALL CCOPY( KI, WORK( 1 ), 1, VR( 1, IS ), 1 )
 | 
						|
*
 | 
						|
               II = ICAMAX( KI, VR( 1, IS ), 1 )
 | 
						|
               REMAX = ONE / CABS1( VR( II, IS ) )
 | 
						|
               CALL CSSCAL( KI, REMAX, VR( 1, IS ), 1 )
 | 
						|
*
 | 
						|
               DO 60 K = KI + 1, N
 | 
						|
                  VR( K, IS ) = CMZERO
 | 
						|
   60          CONTINUE
 | 
						|
            ELSE
 | 
						|
               IF( KI.GT.1 )
 | 
						|
     $            CALL CGEMV( 'N', N, KI-1, CMONE, VR, LDVR, WORK( 1 ),
 | 
						|
     $                        1, CMPLX( SCALE ), VR( 1, KI ), 1 )
 | 
						|
*
 | 
						|
               II = ICAMAX( N, VR( 1, KI ), 1 )
 | 
						|
               REMAX = ONE / CABS1( VR( II, KI ) )
 | 
						|
               CALL CSSCAL( N, REMAX, VR( 1, KI ), 1 )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Set back the original diagonal elements of T.
 | 
						|
*
 | 
						|
            DO 70 K = 1, KI - 1
 | 
						|
               T( K, K ) = WORK( K+N )
 | 
						|
   70       CONTINUE
 | 
						|
*
 | 
						|
            IS = IS - 1
 | 
						|
   80    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LEFTV ) THEN
 | 
						|
*
 | 
						|
*        Compute left eigenvectors.
 | 
						|
*
 | 
						|
         IS = 1
 | 
						|
         DO 130 KI = 1, N
 | 
						|
*
 | 
						|
            IF( SOMEV ) THEN
 | 
						|
               IF( .NOT.SELECT( KI ) )
 | 
						|
     $            GO TO 130
 | 
						|
            END IF
 | 
						|
            SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
 | 
						|
*
 | 
						|
            WORK( N ) = CMONE
 | 
						|
*
 | 
						|
*           Form right-hand side.
 | 
						|
*
 | 
						|
            DO 90 K = KI + 1, N
 | 
						|
               WORK( K ) = -CONJG( T( KI, K ) )
 | 
						|
   90       CONTINUE
 | 
						|
*
 | 
						|
*           Solve the triangular system:
 | 
						|
*              (T(KI+1:N,KI+1:N) - T(KI,KI))**H*X = SCALE*WORK.
 | 
						|
*
 | 
						|
            DO 100 K = KI + 1, N
 | 
						|
               T( K, K ) = T( K, K ) - T( KI, KI )
 | 
						|
               IF( CABS1( T( K, K ) ).LT.SMIN )
 | 
						|
     $            T( K, K ) = SMIN
 | 
						|
  100       CONTINUE
 | 
						|
*
 | 
						|
            IF( KI.LT.N ) THEN
 | 
						|
               CALL CLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
 | 
						|
     $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
 | 
						|
     $                      WORK( KI+1 ), SCALE, RWORK, INFO )
 | 
						|
               WORK( KI ) = SCALE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Copy the vector x or Q*x to VL and normalize.
 | 
						|
*
 | 
						|
            IF( .NOT.OVER ) THEN
 | 
						|
               CALL CCOPY( N-KI+1, WORK( KI ), 1, VL( KI, IS ), 1 )
 | 
						|
*
 | 
						|
               II = ICAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
 | 
						|
               REMAX = ONE / CABS1( VL( II, IS ) )
 | 
						|
               CALL CSSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
 | 
						|
*
 | 
						|
               DO 110 K = 1, KI - 1
 | 
						|
                  VL( K, IS ) = CMZERO
 | 
						|
  110          CONTINUE
 | 
						|
            ELSE
 | 
						|
               IF( KI.LT.N )
 | 
						|
     $            CALL CGEMV( 'N', N, N-KI, CMONE, VL( 1, KI+1 ), LDVL,
 | 
						|
     $                        WORK( KI+1 ), 1, CMPLX( SCALE ),
 | 
						|
     $                        VL( 1, KI ), 1 )
 | 
						|
*
 | 
						|
               II = ICAMAX( N, VL( 1, KI ), 1 )
 | 
						|
               REMAX = ONE / CABS1( VL( II, KI ) )
 | 
						|
               CALL CSSCAL( N, REMAX, VL( 1, KI ), 1 )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Set back the original diagonal elements of T.
 | 
						|
*
 | 
						|
            DO 120 K = KI + 1, N
 | 
						|
               T( K, K ) = WORK( K+N )
 | 
						|
  120       CONTINUE
 | 
						|
*
 | 
						|
            IS = IS + 1
 | 
						|
  130    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CTREVC
 | 
						|
*
 | 
						|
      END
 |