464 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			464 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPSTRF computes the Cholesky factorization with complete pivoting of complex Hermitian positive semidefinite matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CPSTRF + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpstrf.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpstrf.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpstrf.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       REAL               TOL
 | 
						|
*       INTEGER            INFO, LDA, N, RANK
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * )
 | 
						|
*       REAL               WORK( 2*N )
 | 
						|
*       INTEGER            PIV( N )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPSTRF computes the Cholesky factorization with complete
 | 
						|
*> pivoting of a complex Hermitian positive semidefinite matrix A.
 | 
						|
*>
 | 
						|
*> The factorization has the form
 | 
						|
*>    P**T * A * P = U**H * U ,  if UPLO = 'U',
 | 
						|
*>    P**T * A * P = L  * L**H,  if UPLO = 'L',
 | 
						|
*> where U is an upper triangular matrix and L is lower triangular, and
 | 
						|
*> P is stored as vector PIV.
 | 
						|
*>
 | 
						|
*> This algorithm does not attempt to check that A is positive
 | 
						|
*> semidefinite. This version of the algorithm calls level 3 BLAS.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          symmetric matrix A is stored.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | 
						|
*>          n by n upper triangular part of A contains the upper
 | 
						|
*>          triangular part of the matrix A, and the strictly lower
 | 
						|
*>          triangular part of A is not referenced.  If UPLO = 'L', the
 | 
						|
*>          leading n by n lower triangular part of A contains the lower
 | 
						|
*>          triangular part of the matrix A, and the strictly upper
 | 
						|
*>          triangular part of A is not referenced.
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the factor U or L from the Cholesky
 | 
						|
*>          factorization as above.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] PIV
 | 
						|
*> \verbatim
 | 
						|
*>          PIV is INTEGER array, dimension (N)
 | 
						|
*>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RANK
 | 
						|
*> \verbatim
 | 
						|
*>          RANK is INTEGER
 | 
						|
*>          The rank of A given by the number of steps the algorithm
 | 
						|
*>          completed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TOL
 | 
						|
*> \verbatim
 | 
						|
*>          TOL is REAL
 | 
						|
*>          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
 | 
						|
*>          will be used. The algorithm terminates at the (K-1)st step
 | 
						|
*>          if the pivot <= TOL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (2*N)
 | 
						|
*>          Work space.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          < 0: If INFO = -K, the K-th argument had an illegal value,
 | 
						|
*>          = 0: algorithm completed successfully, and
 | 
						|
*>          > 0: the matrix A is either rank deficient with computed rank
 | 
						|
*>               as returned in RANK, or is not positive semidefinite. See
 | 
						|
*>               Section 7 of LAPACK Working Note #161 for further
 | 
						|
*>               information.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL               TOL
 | 
						|
      INTEGER            INFO, LDA, N, RANK
 | 
						|
      CHARACTER          UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * )
 | 
						|
      REAL               WORK( 2*N )
 | 
						|
      INTEGER            PIV( N )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX            CTEMP
 | 
						|
      REAL               AJJ, SSTOP, STEMP
 | 
						|
      INTEGER            I, ITEMP, J, JB, K, NB, PVT
 | 
						|
      LOGICAL            UPPER
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      INTEGER            ILAENV
 | 
						|
      LOGICAL            LSAME, SISNAN
 | 
						|
      EXTERNAL           SLAMCH, ILAENV, LSAME, SISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMV, CHERK, CLACGV, CPSTF2, CSSCAL, CSWAP,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CONJG, MAX, MIN, REAL, SQRT, MAXLOC
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CPSTRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Get block size
 | 
						|
*
 | 
						|
      NB = ILAENV( 1, 'CPOTRF', UPLO, N, -1, -1, -1 )
 | 
						|
      IF( NB.LE.1 .OR. NB.GE.N ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code
 | 
						|
*
 | 
						|
         CALL CPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
 | 
						|
     $                INFO )
 | 
						|
         GO TO 230
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*     Initialize PIV
 | 
						|
*
 | 
						|
         DO 100 I = 1, N
 | 
						|
            PIV( I ) = I
 | 
						|
  100    CONTINUE
 | 
						|
*
 | 
						|
*     Compute stopping value
 | 
						|
*
 | 
						|
         DO 110 I = 1, N
 | 
						|
            WORK( I ) = REAL( A( I, I ) )
 | 
						|
  110    CONTINUE
 | 
						|
         PVT = MAXLOC( WORK( 1:N ), 1 )
 | 
						|
         AJJ = REAL( A( PVT, PVT ) )
 | 
						|
         IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
 | 
						|
            RANK = 0
 | 
						|
            INFO = 1
 | 
						|
            GO TO 230
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*     Compute stopping value if not supplied
 | 
						|
*
 | 
						|
         IF( TOL.LT.ZERO ) THEN
 | 
						|
            SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ
 | 
						|
         ELSE
 | 
						|
            SSTOP = TOL
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           Compute the Cholesky factorization P**T * A * P = U**H * U
 | 
						|
*
 | 
						|
            DO 160 K = 1, N, NB
 | 
						|
*
 | 
						|
*              Account for last block not being NB wide
 | 
						|
*
 | 
						|
               JB = MIN( NB, N-K+1 )
 | 
						|
*
 | 
						|
*              Set relevant part of first half of WORK to zero,
 | 
						|
*              holds dot products
 | 
						|
*
 | 
						|
               DO 120 I = K, N
 | 
						|
                  WORK( I ) = 0
 | 
						|
  120          CONTINUE
 | 
						|
*
 | 
						|
               DO 150 J = K, K + JB - 1
 | 
						|
*
 | 
						|
*              Find pivot, test for exit, else swap rows and columns
 | 
						|
*              Update dot products, compute possible pivots which are
 | 
						|
*              stored in the second half of WORK
 | 
						|
*
 | 
						|
                  DO 130 I = J, N
 | 
						|
*
 | 
						|
                     IF( J.GT.K ) THEN
 | 
						|
                        WORK( I ) = WORK( I ) +
 | 
						|
     $                              REAL( CONJG( A( J-1, I ) )*
 | 
						|
     $                                    A( J-1, I ) )
 | 
						|
                     END IF
 | 
						|
                     WORK( N+I ) = REAL( A( I, I ) ) - WORK( I )
 | 
						|
*
 | 
						|
  130             CONTINUE
 | 
						|
*
 | 
						|
                  IF( J.GT.1 ) THEN
 | 
						|
                     ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
 | 
						|
                     PVT = ITEMP + J - 1
 | 
						|
                     AJJ = WORK( N+PVT )
 | 
						|
                     IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
 | 
						|
                        A( J, J ) = AJJ
 | 
						|
                        GO TO 220
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( J.NE.PVT ) THEN
 | 
						|
*
 | 
						|
*                    Pivot OK, so can now swap pivot rows and columns
 | 
						|
*
 | 
						|
                     A( PVT, PVT ) = A( J, J )
 | 
						|
                     CALL CSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
 | 
						|
                     IF( PVT.LT.N )
 | 
						|
     $                  CALL CSWAP( N-PVT, A( J, PVT+1 ), LDA,
 | 
						|
     $                              A( PVT, PVT+1 ), LDA )
 | 
						|
                     DO 140 I = J + 1, PVT - 1
 | 
						|
                        CTEMP = CONJG( A( J, I ) )
 | 
						|
                        A( J, I ) = CONJG( A( I, PVT ) )
 | 
						|
                        A( I, PVT ) = CTEMP
 | 
						|
  140                CONTINUE
 | 
						|
                     A( J, PVT ) = CONJG( A( J, PVT ) )
 | 
						|
*
 | 
						|
*                    Swap dot products and PIV
 | 
						|
*
 | 
						|
                     STEMP = WORK( J )
 | 
						|
                     WORK( J ) = WORK( PVT )
 | 
						|
                     WORK( PVT ) = STEMP
 | 
						|
                     ITEMP = PIV( PVT )
 | 
						|
                     PIV( PVT ) = PIV( J )
 | 
						|
                     PIV( J ) = ITEMP
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  AJJ = SQRT( AJJ )
 | 
						|
                  A( J, J ) = AJJ
 | 
						|
*
 | 
						|
*                 Compute elements J+1:N of row J.
 | 
						|
*
 | 
						|
                  IF( J.LT.N ) THEN
 | 
						|
                     CALL CLACGV( J-1, A( 1, J ), 1 )
 | 
						|
                     CALL CGEMV( 'Trans', J-K, N-J, -CONE, A( K, J+1 ),
 | 
						|
     $                           LDA, A( K, J ), 1, CONE, A( J, J+1 ),
 | 
						|
     $                           LDA )
 | 
						|
                     CALL CLACGV( J-1, A( 1, J ), 1 )
 | 
						|
                     CALL CSSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
  150          CONTINUE
 | 
						|
*
 | 
						|
*              Update trailing matrix, J already incremented
 | 
						|
*
 | 
						|
               IF( K+JB.LE.N ) THEN
 | 
						|
                  CALL CHERK( 'Upper', 'Conj Trans', N-J+1, JB, -ONE,
 | 
						|
     $                        A( K, J ), LDA, ONE, A( J, J ), LDA )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
  160       CONTINUE
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*        Compute the Cholesky factorization P**T * A * P = L * L**H
 | 
						|
*
 | 
						|
            DO 210 K = 1, N, NB
 | 
						|
*
 | 
						|
*              Account for last block not being NB wide
 | 
						|
*
 | 
						|
               JB = MIN( NB, N-K+1 )
 | 
						|
*
 | 
						|
*              Set relevant part of first half of WORK to zero,
 | 
						|
*              holds dot products
 | 
						|
*
 | 
						|
               DO 170 I = K, N
 | 
						|
                  WORK( I ) = 0
 | 
						|
  170          CONTINUE
 | 
						|
*
 | 
						|
               DO 200 J = K, K + JB - 1
 | 
						|
*
 | 
						|
*              Find pivot, test for exit, else swap rows and columns
 | 
						|
*              Update dot products, compute possible pivots which are
 | 
						|
*              stored in the second half of WORK
 | 
						|
*
 | 
						|
                  DO 180 I = J, N
 | 
						|
*
 | 
						|
                     IF( J.GT.K ) THEN
 | 
						|
                        WORK( I ) = WORK( I ) +
 | 
						|
     $                              REAL( CONJG( A( I, J-1 ) )*
 | 
						|
     $                                    A( I, J-1 ) )
 | 
						|
                     END IF
 | 
						|
                     WORK( N+I ) = REAL( A( I, I ) ) - WORK( I )
 | 
						|
*
 | 
						|
  180             CONTINUE
 | 
						|
*
 | 
						|
                  IF( J.GT.1 ) THEN
 | 
						|
                     ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
 | 
						|
                     PVT = ITEMP + J - 1
 | 
						|
                     AJJ = WORK( N+PVT )
 | 
						|
                     IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
 | 
						|
                        A( J, J ) = AJJ
 | 
						|
                        GO TO 220
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( J.NE.PVT ) THEN
 | 
						|
*
 | 
						|
*                    Pivot OK, so can now swap pivot rows and columns
 | 
						|
*
 | 
						|
                     A( PVT, PVT ) = A( J, J )
 | 
						|
                     CALL CSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
 | 
						|
                     IF( PVT.LT.N )
 | 
						|
     $                  CALL CSWAP( N-PVT, A( PVT+1, J ), 1,
 | 
						|
     $                              A( PVT+1, PVT ), 1 )
 | 
						|
                     DO 190 I = J + 1, PVT - 1
 | 
						|
                        CTEMP = CONJG( A( I, J ) )
 | 
						|
                        A( I, J ) = CONJG( A( PVT, I ) )
 | 
						|
                        A( PVT, I ) = CTEMP
 | 
						|
  190                CONTINUE
 | 
						|
                     A( PVT, J ) = CONJG( A( PVT, J ) )
 | 
						|
*
 | 
						|
*                    Swap dot products and PIV
 | 
						|
*
 | 
						|
                     STEMP = WORK( J )
 | 
						|
                     WORK( J ) = WORK( PVT )
 | 
						|
                     WORK( PVT ) = STEMP
 | 
						|
                     ITEMP = PIV( PVT )
 | 
						|
                     PIV( PVT ) = PIV( J )
 | 
						|
                     PIV( J ) = ITEMP
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  AJJ = SQRT( AJJ )
 | 
						|
                  A( J, J ) = AJJ
 | 
						|
*
 | 
						|
*                 Compute elements J+1:N of column J.
 | 
						|
*
 | 
						|
                  IF( J.LT.N ) THEN
 | 
						|
                     CALL CLACGV( J-1, A( J, 1 ), LDA )
 | 
						|
                     CALL CGEMV( 'No Trans', N-J, J-K, -CONE,
 | 
						|
     $                           A( J+1, K ), LDA, A( J, K ), LDA, CONE,
 | 
						|
     $                           A( J+1, J ), 1 )
 | 
						|
                     CALL CLACGV( J-1, A( J, 1 ), LDA )
 | 
						|
                     CALL CSSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
  200          CONTINUE
 | 
						|
*
 | 
						|
*              Update trailing matrix, J already incremented
 | 
						|
*
 | 
						|
               IF( K+JB.LE.N ) THEN
 | 
						|
                  CALL CHERK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
 | 
						|
     $                        A( J, K ), LDA, ONE, A( J, J ), LDA )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
  210       CONTINUE
 | 
						|
*
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Ran to completion, A has full rank
 | 
						|
*
 | 
						|
      RANK = N
 | 
						|
*
 | 
						|
      GO TO 230
 | 
						|
  220 CONTINUE
 | 
						|
*
 | 
						|
*     Rank is the number of steps completed.  Set INFO = 1 to signal
 | 
						|
*     that the factorization cannot be used to solve a system.
 | 
						|
*
 | 
						|
      RANK = J - 1
 | 
						|
      INFO = 1
 | 
						|
*
 | 
						|
  230 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPSTRF
 | 
						|
*
 | 
						|
      END
 |