238 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			238 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CPOTF2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpotf2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpotf2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpotf2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CPOTF2( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPOTF2 computes the Cholesky factorization of a complex Hermitian
 | 
						|
*> positive definite matrix A.
 | 
						|
*>
 | 
						|
*> The factorization has the form
 | 
						|
*>    A = U**H * U ,  if UPLO = 'U', or
 | 
						|
*>    A = L  * L**H,  if UPLO = 'L',
 | 
						|
*> where U is an upper triangular matrix and L is lower triangular.
 | 
						|
*>
 | 
						|
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          Hermitian matrix A is stored.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 | 
						|
*>          n by n upper triangular part of A contains the upper
 | 
						|
*>          triangular part of the matrix A, and the strictly lower
 | 
						|
*>          triangular part of A is not referenced.  If UPLO = 'L', the
 | 
						|
*>          leading n by n lower triangular part of A contains the lower
 | 
						|
*>          triangular part of the matrix A, and the strictly upper
 | 
						|
*>          triangular part of A is not referenced.
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the factor U or L from the Cholesky
 | 
						|
*>          factorization A = U**H *U  or A = L*L**H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -k, the k-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = k, the leading minor of order k is not
 | 
						|
*>               positive definite, and the factorization could not be
 | 
						|
*>               completed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexPOcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CPOTF2( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            J
 | 
						|
      REAL               AJJ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME, SISNAN
 | 
						|
      COMPLEX            CDOTC
 | 
						|
      EXTERNAL           LSAME, CDOTC, SISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMV, CLACGV, CSSCAL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, REAL, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CPOTF2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Compute the Cholesky factorization A = U**H *U.
 | 
						|
*
 | 
						|
         DO 10 J = 1, N
 | 
						|
*
 | 
						|
*           Compute U(J,J) and test for non-positive-definiteness.
 | 
						|
*
 | 
						|
            AJJ = REAL( A( J, J ) ) - CDOTC( J-1, A( 1, J ), 1,
 | 
						|
     $            A( 1, J ), 1 )
 | 
						|
            IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
 | 
						|
               A( J, J ) = AJJ
 | 
						|
               GO TO 30
 | 
						|
            END IF
 | 
						|
            AJJ = SQRT( AJJ )
 | 
						|
            A( J, J ) = AJJ
 | 
						|
*
 | 
						|
*           Compute elements J+1:N of row J.
 | 
						|
*
 | 
						|
            IF( J.LT.N ) THEN
 | 
						|
               CALL CLACGV( J-1, A( 1, J ), 1 )
 | 
						|
               CALL CGEMV( 'Transpose', J-1, N-J, -CONE, A( 1, J+1 ),
 | 
						|
     $                     LDA, A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
 | 
						|
               CALL CLACGV( J-1, A( 1, J ), 1 )
 | 
						|
               CALL CSSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute the Cholesky factorization A = L*L**H.
 | 
						|
*
 | 
						|
         DO 20 J = 1, N
 | 
						|
*
 | 
						|
*           Compute L(J,J) and test for non-positive-definiteness.
 | 
						|
*
 | 
						|
            AJJ = REAL( A( J, J ) ) - CDOTC( J-1, A( J, 1 ), LDA,
 | 
						|
     $            A( J, 1 ), LDA )
 | 
						|
            IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
 | 
						|
               A( J, J ) = AJJ
 | 
						|
               GO TO 30
 | 
						|
            END IF
 | 
						|
            AJJ = SQRT( AJJ )
 | 
						|
            A( J, J ) = AJJ
 | 
						|
*
 | 
						|
*           Compute elements J+1:N of column J.
 | 
						|
*
 | 
						|
            IF( J.LT.N ) THEN
 | 
						|
               CALL CLACGV( J-1, A( J, 1 ), LDA )
 | 
						|
               CALL CGEMV( 'No transpose', N-J, J-1, -CONE, A( J+1, 1 ),
 | 
						|
     $                     LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
 | 
						|
               CALL CLACGV( J-1, A( J, 1 ), LDA )
 | 
						|
               CALL CSSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
      GO TO 40
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      INFO = J
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPOTF2
 | 
						|
*
 | 
						|
      END
 |