224 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPOEQUB
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CPOEQUB + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpoequb.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpoequb.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpoequb.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       REAL               AMAX, SCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * )
 | 
						|
*       REAL               S( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPOEQUB computes row and column scalings intended to equilibrate a
 | 
						|
*> Hermitian positive definite matrix A and reduce its condition number
 | 
						|
*> (with respect to the two-norm).  S contains the scale factors,
 | 
						|
*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 | 
						|
*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 | 
						|
*> choice of S puts the condition number of B within a factor N of the
 | 
						|
*> smallest possible condition number over all possible diagonal
 | 
						|
*> scalings.
 | 
						|
*>
 | 
						|
*> This routine differs from CPOEQU by restricting the scaling factors
 | 
						|
*> to a power of the radix.  Barring over- and underflow, scaling by
 | 
						|
*> these factors introduces no additional rounding errors.  However, the
 | 
						|
*> scaled diagonal entries are no longer approximately 1 but lie
 | 
						|
*> between sqrt(radix) and 1/sqrt(radix).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          The N-by-N Hermitian positive definite matrix whose scaling
 | 
						|
*>          factors are to be computed.  Only the diagonal elements of A
 | 
						|
*>          are referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is REAL array, dimension (N)
 | 
						|
*>          If INFO = 0, S contains the scale factors for A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCOND
 | 
						|
*> \verbatim
 | 
						|
*>          SCOND is REAL
 | 
						|
*>          If INFO = 0, S contains the ratio of the smallest S(i) to
 | 
						|
*>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
 | 
						|
*>          large nor too small, it is not worth scaling by S.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AMAX
 | 
						|
*> \verbatim
 | 
						|
*>          AMAX is REAL
 | 
						|
*>          Absolute value of largest matrix element.  If AMAX is very
 | 
						|
*>          close to overflow or very close to underflow, the matrix
 | 
						|
*>          should be scaled.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexPOcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
      REAL               AMAX, SCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * )
 | 
						|
      REAL               S( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I
 | 
						|
      REAL               SMIN, BASE, TMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, SQRT, LOG, INT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
*     Positive definite only performs 1 pass of equilibration.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CPOEQUB', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         SCOND = ONE
 | 
						|
         AMAX = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
 | 
						|
      BASE = SLAMCH( 'B' )
 | 
						|
      TMP = -0.5 / LOG ( BASE )
 | 
						|
*
 | 
						|
*     Find the minimum and maximum diagonal elements.
 | 
						|
*
 | 
						|
      S( 1 ) = A( 1, 1 )
 | 
						|
      SMIN = S( 1 )
 | 
						|
      AMAX = S( 1 )
 | 
						|
      DO 10 I = 2, N
 | 
						|
         S( I ) = A( I, I )
 | 
						|
         SMIN = MIN( SMIN, S( I ) )
 | 
						|
         AMAX = MAX( AMAX, S( I ) )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      IF( SMIN.LE.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Find the first non-positive diagonal element and return.
 | 
						|
*
 | 
						|
         DO 20 I = 1, N
 | 
						|
            IF( S( I ).LE.ZERO ) THEN
 | 
						|
               INFO = I
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Set the scale factors to the reciprocals
 | 
						|
*        of the diagonal elements.
 | 
						|
*
 | 
						|
         DO 30 I = 1, N
 | 
						|
            S( I ) = BASE ** INT( TMP * LOG( S( I ) ) )
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        Compute SCOND = min(S(I)) / max(S(I)).
 | 
						|
*
 | 
						|
         SCOND = SQRT( SMIN ) / SQRT( AMAX )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPOEQUB
 | 
						|
*
 | 
						|
      END
 |