280 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			280 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLANHE + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clanhe.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clanhe.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clanhe.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       REAL             FUNCTION CLANHE( NORM, UPLO, N, A, LDA, WORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          NORM, UPLO
 | 
						|
*       INTEGER            LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               WORK( * )
 | 
						|
*       COMPLEX            A( LDA, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLANHE  returns the value of the one norm,  or the Frobenius norm, or
 | 
						|
*> the  infinity norm,  or the  element of  largest absolute value  of a
 | 
						|
*> complex hermitian matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \return CLANHE
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    CLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | 
						|
*>             (
 | 
						|
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | 
						|
*>             (
 | 
						|
*>             ( normI(A),         NORM = 'I' or 'i'
 | 
						|
*>             (
 | 
						|
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | 
						|
*>
 | 
						|
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | 
						|
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | 
						|
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | 
						|
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NORM
 | 
						|
*> \verbatim
 | 
						|
*>          NORM is CHARACTER*1
 | 
						|
*>          Specifies the value to be returned in CLANHE as described
 | 
						|
*>          above.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          hermitian matrix A is to be referenced.
 | 
						|
*>          = 'U':  Upper triangular part of A is referenced
 | 
						|
*>          = 'L':  Lower triangular part of A is referenced
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.  When N = 0, CLANHE is
 | 
						|
*>          set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          The hermitian matrix A.  If UPLO = 'U', the leading n by n
 | 
						|
*>          upper triangular part of A contains the upper triangular part
 | 
						|
*>          of the matrix A, and the strictly lower triangular part of A
 | 
						|
*>          is not referenced.  If UPLO = 'L', the leading n by n lower
 | 
						|
*>          triangular part of A contains the lower triangular part of
 | 
						|
*>          the matrix A, and the strictly upper triangular part of A is
 | 
						|
*>          not referenced. Note that the imaginary parts of the diagonal
 | 
						|
*>          elements need not be set and are assumed to be zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(N,1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK)),
 | 
						|
*>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 | 
						|
*>          WORK is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexHEauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      REAL             FUNCTION CLANHE( NORM, UPLO, N, A, LDA, WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
      IMPLICIT NONE
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          NORM, UPLO
 | 
						|
      INTEGER            LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               WORK( * )
 | 
						|
      COMPLEX            A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      REAL               ABSA, SUM, VALUE
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      REAL               SSQ( 2 ), COLSSQ( 2 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME, SISNAN
 | 
						|
      EXTERNAL           LSAME, SISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLASSQ, SCOMBSSQ
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, REAL, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         VALUE = ZERO
 | 
						|
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | 
						|
*
 | 
						|
*        Find max(abs(A(i,j))).
 | 
						|
*
 | 
						|
         VALUE = ZERO
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            DO 20 J = 1, N
 | 
						|
               DO 10 I = 1, J - 1
 | 
						|
                  SUM = ABS( A( I, J ) )
 | 
						|
                  IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | 
						|
   10          CONTINUE
 | 
						|
               SUM = ABS( REAL( A( J, J ) ) )
 | 
						|
               IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 40 J = 1, N
 | 
						|
               SUM = ABS( REAL( A( J, J ) ) )
 | 
						|
               IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | 
						|
               DO 30 I = J + 1, N
 | 
						|
                  SUM = ABS( A( I, J ) )
 | 
						|
                  IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | 
						|
   30          CONTINUE
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
 | 
						|
     $         ( NORM.EQ.'1' ) ) THEN
 | 
						|
*
 | 
						|
*        Find normI(A) ( = norm1(A), since A is hermitian).
 | 
						|
*
 | 
						|
         VALUE = ZERO
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            DO 60 J = 1, N
 | 
						|
               SUM = ZERO
 | 
						|
               DO 50 I = 1, J - 1
 | 
						|
                  ABSA = ABS( A( I, J ) )
 | 
						|
                  SUM = SUM + ABSA
 | 
						|
                  WORK( I ) = WORK( I ) + ABSA
 | 
						|
   50          CONTINUE
 | 
						|
               WORK( J ) = SUM + ABS( REAL( A( J, J ) ) )
 | 
						|
   60       CONTINUE
 | 
						|
            DO 70 I = 1, N
 | 
						|
               SUM = WORK( I )
 | 
						|
               IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | 
						|
   70       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 80 I = 1, N
 | 
						|
               WORK( I ) = ZERO
 | 
						|
   80       CONTINUE
 | 
						|
            DO 100 J = 1, N
 | 
						|
               SUM = WORK( J ) + ABS( REAL( A( J, J ) ) )
 | 
						|
               DO 90 I = J + 1, N
 | 
						|
                  ABSA = ABS( A( I, J ) )
 | 
						|
                  SUM = SUM + ABSA
 | 
						|
                  WORK( I ) = WORK( I ) + ABSA
 | 
						|
   90          CONTINUE
 | 
						|
               IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | 
						|
  100       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | 
						|
*
 | 
						|
*        Find normF(A).
 | 
						|
*        SSQ(1) is scale
 | 
						|
*        SSQ(2) is sum-of-squares
 | 
						|
*        For better accuracy, sum each column separately.
 | 
						|
*
 | 
						|
         SSQ( 1 ) = ZERO
 | 
						|
         SSQ( 2 ) = ONE
 | 
						|
*
 | 
						|
*        Sum off-diagonals
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            DO 110 J = 2, N
 | 
						|
               COLSSQ( 1 ) = ZERO
 | 
						|
               COLSSQ( 2 ) = ONE
 | 
						|
               CALL CLASSQ( J-1, A( 1, J ), 1,
 | 
						|
     $                      COLSSQ( 1 ), COLSSQ( 2 ) )
 | 
						|
               CALL SCOMBSSQ( SSQ, COLSSQ )
 | 
						|
  110       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 120 J = 1, N - 1
 | 
						|
               COLSSQ( 1 ) = ZERO
 | 
						|
               COLSSQ( 2 ) = ONE
 | 
						|
               CALL CLASSQ( N-J, A( J+1, J ), 1,
 | 
						|
     $                      COLSSQ( 1 ), COLSSQ( 2 ) )
 | 
						|
               CALL SCOMBSSQ( SSQ, COLSSQ )
 | 
						|
  120       CONTINUE
 | 
						|
         END IF
 | 
						|
         SSQ( 2 ) = 2*SSQ( 2 )
 | 
						|
*
 | 
						|
*        Sum diagonal
 | 
						|
*
 | 
						|
         DO 130 I = 1, N
 | 
						|
            IF( REAL( A( I, I ) ).NE.ZERO ) THEN
 | 
						|
               ABSA = ABS( REAL( A( I, I ) ) )
 | 
						|
               IF( SSQ( 1 ).LT.ABSA ) THEN
 | 
						|
                  SSQ( 2 ) = ONE + SSQ( 2 )*( SSQ( 1 ) / ABSA )**2
 | 
						|
                  SSQ( 1 ) = ABSA
 | 
						|
               ELSE
 | 
						|
                  SSQ( 2 ) = SSQ( 2 ) + ( ABSA / SSQ( 1 ) )**2
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
  130    CONTINUE
 | 
						|
         VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CLANHE = VALUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLANHE
 | 
						|
*
 | 
						|
      END
 |