411 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			411 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CHPTRI
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CHPTRI + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chptri.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chptri.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chptri.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX            AP( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CHPTRI computes the inverse of a complex Hermitian indefinite matrix
 | 
						|
*> A in packed storage using the factorization A = U*D*U**H or
 | 
						|
*> A = L*D*L**H computed by CHPTRF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the details of the factorization are stored
 | 
						|
*>          as an upper or lower triangular matrix.
 | 
						|
*>          = 'U':  Upper triangular, form is A = U*D*U**H;
 | 
						|
*>          = 'L':  Lower triangular, form is A = L*D*L**H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the block diagonal matrix D and the multipliers
 | 
						|
*>          used to obtain the factor U or L as computed by CHPTRF,
 | 
						|
*>          stored as a packed triangular matrix.
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the (Hermitian) inverse of the original
 | 
						|
*>          matrix, stored as a packed triangular matrix. The j-th column
 | 
						|
*>          of inv(A) is stored in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L',
 | 
						|
*>             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          Details of the interchanges and the block structure of D
 | 
						|
*>          as determined by CHPTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 | 
						|
*>               inverse could not be computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX            AP( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      COMPLEX            CONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, CONE = ( 1.0E+0, 0.0E+0 ),
 | 
						|
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
 | 
						|
      REAL               AK, AKP1, D, T
 | 
						|
      COMPLEX            AKKP1, TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      COMPLEX            CDOTC
 | 
						|
      EXTERNAL           LSAME, CDOTC
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CCOPY, CHPMV, CSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, CONJG, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CHPTRI', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Check that the diagonal matrix D is nonsingular.
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Upper triangular storage: examine D from bottom to top
 | 
						|
*
 | 
						|
         KP = N*( N+1 ) / 2
 | 
						|
         DO 10 INFO = N, 1, -1
 | 
						|
            IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
 | 
						|
     $         RETURN
 | 
						|
            KP = KP - INFO
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Lower triangular storage: examine D from top to bottom.
 | 
						|
*
 | 
						|
         KP = 1
 | 
						|
         DO 20 INFO = 1, N
 | 
						|
            IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
 | 
						|
     $         RETURN
 | 
						|
            KP = KP + N - INFO + 1
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Compute inv(A) from the factorization A = U*D*U**H.
 | 
						|
*
 | 
						|
*        K is the main loop index, increasing from 1 to N in steps of
 | 
						|
*        1 or 2, depending on the size of the diagonal blocks.
 | 
						|
*
 | 
						|
         K = 1
 | 
						|
         KC = 1
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        If K > N, exit from loop.
 | 
						|
*
 | 
						|
         IF( K.GT.N )
 | 
						|
     $      GO TO 50
 | 
						|
*
 | 
						|
         KCNEXT = KC + K
 | 
						|
         IF( IPIV( K ).GT.0 ) THEN
 | 
						|
*
 | 
						|
*           1 x 1 diagonal block
 | 
						|
*
 | 
						|
*           Invert the diagonal block.
 | 
						|
*
 | 
						|
            AP( KC+K-1 ) = ONE / REAL( AP( KC+K-1 ) )
 | 
						|
*
 | 
						|
*           Compute column K of the inverse.
 | 
						|
*
 | 
						|
            IF( K.GT.1 ) THEN
 | 
						|
               CALL CCOPY( K-1, AP( KC ), 1, WORK, 1 )
 | 
						|
               CALL CHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
 | 
						|
     $                     AP( KC ), 1 )
 | 
						|
               AP( KC+K-1 ) = AP( KC+K-1 ) -
 | 
						|
     $                        REAL( CDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
 | 
						|
            END IF
 | 
						|
            KSTEP = 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           2 x 2 diagonal block
 | 
						|
*
 | 
						|
*           Invert the diagonal block.
 | 
						|
*
 | 
						|
            T = ABS( AP( KCNEXT+K-1 ) )
 | 
						|
            AK = REAL( AP( KC+K-1 ) ) / T
 | 
						|
            AKP1 = REAL( AP( KCNEXT+K ) ) / T
 | 
						|
            AKKP1 = AP( KCNEXT+K-1 ) / T
 | 
						|
            D = T*( AK*AKP1-ONE )
 | 
						|
            AP( KC+K-1 ) = AKP1 / D
 | 
						|
            AP( KCNEXT+K ) = AK / D
 | 
						|
            AP( KCNEXT+K-1 ) = -AKKP1 / D
 | 
						|
*
 | 
						|
*           Compute columns K and K+1 of the inverse.
 | 
						|
*
 | 
						|
            IF( K.GT.1 ) THEN
 | 
						|
               CALL CCOPY( K-1, AP( KC ), 1, WORK, 1 )
 | 
						|
               CALL CHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
 | 
						|
     $                     AP( KC ), 1 )
 | 
						|
               AP( KC+K-1 ) = AP( KC+K-1 ) -
 | 
						|
     $                        REAL( CDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
 | 
						|
               AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
 | 
						|
     $                            CDOTC( K-1, AP( KC ), 1, AP( KCNEXT ),
 | 
						|
     $                            1 )
 | 
						|
               CALL CCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
 | 
						|
               CALL CHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
 | 
						|
     $                     AP( KCNEXT ), 1 )
 | 
						|
               AP( KCNEXT+K ) = AP( KCNEXT+K ) -
 | 
						|
     $                          REAL( CDOTC( K-1, WORK, 1, AP( KCNEXT ),
 | 
						|
     $                          1 ) )
 | 
						|
            END IF
 | 
						|
            KSTEP = 2
 | 
						|
            KCNEXT = KCNEXT + K + 1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         KP = ABS( IPIV( K ) )
 | 
						|
         IF( KP.NE.K ) THEN
 | 
						|
*
 | 
						|
*           Interchange rows and columns K and KP in the leading
 | 
						|
*           submatrix A(1:k+1,1:k+1)
 | 
						|
*
 | 
						|
            KPC = ( KP-1 )*KP / 2 + 1
 | 
						|
            CALL CSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
 | 
						|
            KX = KPC + KP - 1
 | 
						|
            DO 40 J = KP + 1, K - 1
 | 
						|
               KX = KX + J - 1
 | 
						|
               TEMP = CONJG( AP( KC+J-1 ) )
 | 
						|
               AP( KC+J-1 ) = CONJG( AP( KX ) )
 | 
						|
               AP( KX ) = TEMP
 | 
						|
   40       CONTINUE
 | 
						|
            AP( KC+KP-1 ) = CONJG( AP( KC+KP-1 ) )
 | 
						|
            TEMP = AP( KC+K-1 )
 | 
						|
            AP( KC+K-1 ) = AP( KPC+KP-1 )
 | 
						|
            AP( KPC+KP-1 ) = TEMP
 | 
						|
            IF( KSTEP.EQ.2 ) THEN
 | 
						|
               TEMP = AP( KC+K+K-1 )
 | 
						|
               AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
 | 
						|
               AP( KC+K+KP-1 ) = TEMP
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         K = K + KSTEP
 | 
						|
         KC = KCNEXT
 | 
						|
         GO TO 30
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute inv(A) from the factorization A = L*D*L**H.
 | 
						|
*
 | 
						|
*        K is the main loop index, increasing from 1 to N in steps of
 | 
						|
*        1 or 2, depending on the size of the diagonal blocks.
 | 
						|
*
 | 
						|
         NPP = N*( N+1 ) / 2
 | 
						|
         K = N
 | 
						|
         KC = NPP
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
*        If K < 1, exit from loop.
 | 
						|
*
 | 
						|
         IF( K.LT.1 )
 | 
						|
     $      GO TO 80
 | 
						|
*
 | 
						|
         KCNEXT = KC - ( N-K+2 )
 | 
						|
         IF( IPIV( K ).GT.0 ) THEN
 | 
						|
*
 | 
						|
*           1 x 1 diagonal block
 | 
						|
*
 | 
						|
*           Invert the diagonal block.
 | 
						|
*
 | 
						|
            AP( KC ) = ONE / REAL( AP( KC ) )
 | 
						|
*
 | 
						|
*           Compute column K of the inverse.
 | 
						|
*
 | 
						|
            IF( K.LT.N ) THEN
 | 
						|
               CALL CCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
 | 
						|
               CALL CHPMV( UPLO, N-K, -CONE, AP( KC+N-K+1 ), WORK, 1,
 | 
						|
     $                     ZERO, AP( KC+1 ), 1 )
 | 
						|
               AP( KC ) = AP( KC ) - REAL( CDOTC( N-K, WORK, 1,
 | 
						|
     $                    AP( KC+1 ), 1 ) )
 | 
						|
            END IF
 | 
						|
            KSTEP = 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           2 x 2 diagonal block
 | 
						|
*
 | 
						|
*           Invert the diagonal block.
 | 
						|
*
 | 
						|
            T = ABS( AP( KCNEXT+1 ) )
 | 
						|
            AK = REAL( AP( KCNEXT ) ) / T
 | 
						|
            AKP1 = REAL( AP( KC ) ) / T
 | 
						|
            AKKP1 = AP( KCNEXT+1 ) / T
 | 
						|
            D = T*( AK*AKP1-ONE )
 | 
						|
            AP( KCNEXT ) = AKP1 / D
 | 
						|
            AP( KC ) = AK / D
 | 
						|
            AP( KCNEXT+1 ) = -AKKP1 / D
 | 
						|
*
 | 
						|
*           Compute columns K-1 and K of the inverse.
 | 
						|
*
 | 
						|
            IF( K.LT.N ) THEN
 | 
						|
               CALL CCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
 | 
						|
               CALL CHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
 | 
						|
     $                     1, ZERO, AP( KC+1 ), 1 )
 | 
						|
               AP( KC ) = AP( KC ) - REAL( CDOTC( N-K, WORK, 1,
 | 
						|
     $                    AP( KC+1 ), 1 ) )
 | 
						|
               AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
 | 
						|
     $                          CDOTC( N-K, AP( KC+1 ), 1,
 | 
						|
     $                          AP( KCNEXT+2 ), 1 )
 | 
						|
               CALL CCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
 | 
						|
               CALL CHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
 | 
						|
     $                     1, ZERO, AP( KCNEXT+2 ), 1 )
 | 
						|
               AP( KCNEXT ) = AP( KCNEXT ) -
 | 
						|
     $                        REAL( CDOTC( N-K, WORK, 1, AP( KCNEXT+2 ),
 | 
						|
     $                        1 ) )
 | 
						|
            END IF
 | 
						|
            KSTEP = 2
 | 
						|
            KCNEXT = KCNEXT - ( N-K+3 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         KP = ABS( IPIV( K ) )
 | 
						|
         IF( KP.NE.K ) THEN
 | 
						|
*
 | 
						|
*           Interchange rows and columns K and KP in the trailing
 | 
						|
*           submatrix A(k-1:n,k-1:n)
 | 
						|
*
 | 
						|
            KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
 | 
						|
            IF( KP.LT.N )
 | 
						|
     $         CALL CSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
 | 
						|
            KX = KC + KP - K
 | 
						|
            DO 70 J = K + 1, KP - 1
 | 
						|
               KX = KX + N - J + 1
 | 
						|
               TEMP = CONJG( AP( KC+J-K ) )
 | 
						|
               AP( KC+J-K ) = CONJG( AP( KX ) )
 | 
						|
               AP( KX ) = TEMP
 | 
						|
   70       CONTINUE
 | 
						|
            AP( KC+KP-K ) = CONJG( AP( KC+KP-K ) )
 | 
						|
            TEMP = AP( KC )
 | 
						|
            AP( KC ) = AP( KPC )
 | 
						|
            AP( KPC ) = TEMP
 | 
						|
            IF( KSTEP.EQ.2 ) THEN
 | 
						|
               TEMP = AP( KC-N+K-1 )
 | 
						|
               AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
 | 
						|
               AP( KC-N+KP-1 ) = TEMP
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         K = K - KSTEP
 | 
						|
         KC = KCNEXT
 | 
						|
         GO TO 60
 | 
						|
   80    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHPTRI
 | 
						|
*
 | 
						|
      END
 |