1089 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1089 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* > \brief \b CHFRK performs a Hermitian rank-k operation for matrix in RFP format. */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CHFRK + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chfrk.f
 | 
						|
"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chfrk.f
 | 
						|
"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chfrk.f
 | 
						|
"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, */
 | 
						|
/*                         C ) */
 | 
						|
 | 
						|
/*       REAL               ALPHA, BETA */
 | 
						|
/*       INTEGER            K, LDA, N */
 | 
						|
/*       CHARACTER          TRANS, TRANSR, UPLO */
 | 
						|
/*       COMPLEX            A( LDA, * ), C( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > Level 3 BLAS like routine for C in RFP Format. */
 | 
						|
/* > */
 | 
						|
/* > CHFRK performs one of the Hermitian rank--k operations */
 | 
						|
/* > */
 | 
						|
/* >    C := alpha*A*A**H + beta*C, */
 | 
						|
/* > */
 | 
						|
/* > or */
 | 
						|
/* > */
 | 
						|
/* >    C := alpha*A**H*A + beta*C, */
 | 
						|
/* > */
 | 
						|
/* > where alpha and beta are real scalars, C is an n--by--n Hermitian */
 | 
						|
/* > matrix and A is an n--by--k matrix in the first case and a k--by--n */
 | 
						|
/* > matrix in the second case. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] TRANSR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TRANSR is CHARACTER*1 */
 | 
						|
/* >          = 'N':  The Normal Form of RFP A is stored; */
 | 
						|
/* >          = 'C':  The Conjugate-transpose Form of RFP A is stored. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] UPLO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          UPLO is CHARACTER*1 */
 | 
						|
/* >           On  entry,   UPLO  specifies  whether  the  upper  or  lower */
 | 
						|
/* >           triangular  part  of the  array  C  is to be  referenced  as */
 | 
						|
/* >           follows: */
 | 
						|
/* > */
 | 
						|
/* >              UPLO = 'U' or 'u'   Only the  upper triangular part of  C */
 | 
						|
/* >                                  is to be referenced. */
 | 
						|
/* > */
 | 
						|
/* >              UPLO = 'L' or 'l'   Only the  lower triangular part of  C */
 | 
						|
/* >                                  is to be referenced. */
 | 
						|
/* > */
 | 
						|
/* >           Unchanged on exit. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] TRANS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TRANS is CHARACTER*1 */
 | 
						|
/* >           On entry,  TRANS  specifies the operation to be performed as */
 | 
						|
/* >           follows: */
 | 
						|
/* > */
 | 
						|
/* >              TRANS = 'N' or 'n'   C := alpha*A*A**H + beta*C. */
 | 
						|
/* > */
 | 
						|
/* >              TRANS = 'C' or 'c'   C := alpha*A**H*A + beta*C. */
 | 
						|
/* > */
 | 
						|
/* >           Unchanged on exit. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >           On entry,  N specifies the order of the matrix C.  N must be */
 | 
						|
/* >           at least zero. */
 | 
						|
/* >           Unchanged on exit. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] K */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          K is INTEGER */
 | 
						|
/* >           On entry with  TRANS = 'N' or 'n',  K  specifies  the number */
 | 
						|
/* >           of  columns   of  the   matrix   A,   and  on   entry   with */
 | 
						|
/* >           TRANS = 'C' or 'c',  K  specifies  the number of rows of the */
 | 
						|
/* >           matrix A.  K must be at least zero. */
 | 
						|
/* >           Unchanged on exit. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] ALPHA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ALPHA is REAL */
 | 
						|
/* >           On entry, ALPHA specifies the scalar alpha. */
 | 
						|
/* >           Unchanged on exit. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is COMPLEX array, dimension (LDA,ka) */
 | 
						|
/* >           where KA */
 | 
						|
/* >           is K  when TRANS = 'N' or 'n', and is N otherwise. Before */
 | 
						|
/* >           entry with TRANS = 'N' or 'n', the leading N--by--K part of */
 | 
						|
/* >           the array A must contain the matrix A, otherwise the leading */
 | 
						|
/* >           K--by--N part of the array A must contain the matrix A. */
 | 
						|
/* >           Unchanged on exit. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >           On entry, LDA specifies the first dimension of A as declared */
 | 
						|
/* >           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n' */
 | 
						|
/* >           then  LDA must be at least  f2cmax( 1, n ), otherwise  LDA must */
 | 
						|
/* >           be at least  f2cmax( 1, k ). */
 | 
						|
/* >           Unchanged on exit. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] BETA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BETA is REAL */
 | 
						|
/* >           On entry, BETA specifies the scalar beta. */
 | 
						|
/* >           Unchanged on exit. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] C */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          C is COMPLEX array, dimension (N*(N+1)/2) */
 | 
						|
/* >           On entry, the matrix A in RFP Format. RFP Format is */
 | 
						|
/* >           described by TRANSR, UPLO and N. Note that the imaginary */
 | 
						|
/* >           parts of the diagonal elements need not be set, they are */
 | 
						|
/* >           assumed to be zero, and on exit they are set to zero. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complexOTHERcomputational */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int chfrk_(char *transr, char *uplo, char *trans, integer *n,
 | 
						|
	 integer *k, real *alpha, complex *a, integer *lda, real *beta, 
 | 
						|
	complex *c__)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2;
 | 
						|
    complex q__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer info, j;
 | 
						|
    complex cbeta;
 | 
						|
    logical normaltransr;
 | 
						|
    extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, complex *, complex *, integer *, complex *, integer *, 
 | 
						|
	    complex *, complex *, integer *), cherk_(char *, 
 | 
						|
	    char *, integer *, integer *, real *, complex *, integer *, real *
 | 
						|
	    , complex *, integer *);
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer nrowa;
 | 
						|
    logical lower;
 | 
						|
    integer n1, n2;
 | 
						|
    complex calpha;
 | 
						|
    integer nk;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    logical nisodd, notrans;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    --c__;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    info = 0;
 | 
						|
    normaltransr = lsame_(transr, "N");
 | 
						|
    lower = lsame_(uplo, "L");
 | 
						|
    notrans = lsame_(trans, "N");
 | 
						|
 | 
						|
    if (notrans) {
 | 
						|
	nrowa = *n;
 | 
						|
    } else {
 | 
						|
	nrowa = *k;
 | 
						|
    }
 | 
						|
 | 
						|
    if (! normaltransr && ! lsame_(transr, "C")) {
 | 
						|
	info = -1;
 | 
						|
    } else if (! lower && ! lsame_(uplo, "U")) {
 | 
						|
	info = -2;
 | 
						|
    } else if (! notrans && ! lsame_(trans, "C")) {
 | 
						|
	info = -3;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	info = -4;
 | 
						|
    } else if (*k < 0) {
 | 
						|
	info = -5;
 | 
						|
    } else if (*lda < f2cmax(1,nrowa)) {
 | 
						|
	info = -8;
 | 
						|
    }
 | 
						|
    if (info != 0) {
 | 
						|
	i__1 = -info;
 | 
						|
	xerbla_("CHFRK ", &i__1, (ftnlen)6);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible. */
 | 
						|
 | 
						|
/*     The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not */
 | 
						|
/*     done (it is in CHERK for example) and left in the general case. */
 | 
						|
 | 
						|
    if (*n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*alpha == 0.f && *beta == 0.f) {
 | 
						|
	i__1 = *n * (*n + 1) / 2;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = j;
 | 
						|
	    c__[i__2].r = 0.f, c__[i__2].i = 0.f;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    q__1.r = *alpha, q__1.i = 0.f;
 | 
						|
    calpha.r = q__1.r, calpha.i = q__1.i;
 | 
						|
    q__1.r = *beta, q__1.i = 0.f;
 | 
						|
    cbeta.r = q__1.r, cbeta.i = q__1.i;
 | 
						|
 | 
						|
/*     C is N-by-N. */
 | 
						|
/*     If N is odd, set NISODD = .TRUE., and N1 and N2. */
 | 
						|
/*     If N is even, NISODD = .FALSE., and NK. */
 | 
						|
 | 
						|
    if (*n % 2 == 0) {
 | 
						|
	nisodd = FALSE_;
 | 
						|
	nk = *n / 2;
 | 
						|
    } else {
 | 
						|
	nisodd = TRUE_;
 | 
						|
	if (lower) {
 | 
						|
	    n2 = *n / 2;
 | 
						|
	    n1 = *n - n2;
 | 
						|
	} else {
 | 
						|
	    n1 = *n / 2;
 | 
						|
	    n2 = *n - n1;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (nisodd) {
 | 
						|
 | 
						|
/*        N is odd */
 | 
						|
 | 
						|
	if (normaltransr) {
 | 
						|
 | 
						|
/*           N is odd and TRANSR = 'N' */
 | 
						|
 | 
						|
	    if (lower) {
 | 
						|
 | 
						|
/*              N is odd, TRANSR = 'N', and UPLO = 'L' */
 | 
						|
 | 
						|
		if (notrans) {
 | 
						|
 | 
						|
/*                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' */
 | 
						|
 | 
						|
		    cherk_("L", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[1], n);
 | 
						|
		    cherk_("U", "N", &n2, k, alpha, &a[n1 + 1 + a_dim1], lda, 
 | 
						|
			    beta, &c__[*n + 1], n);
 | 
						|
		    cgemm_("N", "C", &n2, &n1, k, &calpha, &a[n1 + 1 + a_dim1]
 | 
						|
			    , lda, &a[a_dim1 + 1], lda, &cbeta, &c__[n1 + 1], 
 | 
						|
			    n);
 | 
						|
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C' */
 | 
						|
 | 
						|
		    cherk_("L", "C", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[1], n);
 | 
						|
		    cherk_("U", "C", &n2, k, alpha, &a[(n1 + 1) * a_dim1 + 1],
 | 
						|
			     lda, beta, &c__[*n + 1], n)
 | 
						|
			    ;
 | 
						|
		    cgemm_("C", "N", &n2, &n1, k, &calpha, &a[(n1 + 1) * 
 | 
						|
			    a_dim1 + 1], lda, &a[a_dim1 + 1], lda, &cbeta, &
 | 
						|
			    c__[n1 + 1], n);
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              N is odd, TRANSR = 'N', and UPLO = 'U' */
 | 
						|
 | 
						|
		if (notrans) {
 | 
						|
 | 
						|
/*                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' */
 | 
						|
 | 
						|
		    cherk_("L", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[n2 + 1], n);
 | 
						|
		    cherk_("U", "N", &n2, k, alpha, &a[n2 + a_dim1], lda, 
 | 
						|
			    beta, &c__[n1 + 1], n);
 | 
						|
		    cgemm_("N", "C", &n1, &n2, k, &calpha, &a[a_dim1 + 1], 
 | 
						|
			    lda, &a[n2 + a_dim1], lda, &cbeta, &c__[1], n);
 | 
						|
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C' */
 | 
						|
 | 
						|
		    cherk_("L", "C", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[n2 + 1], n);
 | 
						|
		    cherk_("U", "C", &n2, k, alpha, &a[n2 * a_dim1 + 1], lda, 
 | 
						|
			    beta, &c__[n1 + 1], n);
 | 
						|
		    cgemm_("C", "N", &n1, &n2, k, &calpha, &a[a_dim1 + 1], 
 | 
						|
			    lda, &a[n2 * a_dim1 + 1], lda, &cbeta, &c__[1], n);
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           N is odd, and TRANSR = 'C' */
 | 
						|
 | 
						|
	    if (lower) {
 | 
						|
 | 
						|
/*              N is odd, TRANSR = 'C', and UPLO = 'L' */
 | 
						|
 | 
						|
		if (notrans) {
 | 
						|
 | 
						|
/*                 N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N' */
 | 
						|
 | 
						|
		    cherk_("U", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[1], &n1);
 | 
						|
		    cherk_("L", "N", &n2, k, alpha, &a[n1 + 1 + a_dim1], lda, 
 | 
						|
			    beta, &c__[2], &n1);
 | 
						|
		    cgemm_("N", "C", &n1, &n2, k, &calpha, &a[a_dim1 + 1], 
 | 
						|
			    lda, &a[n1 + 1 + a_dim1], lda, &cbeta, &c__[n1 * 
 | 
						|
			    n1 + 1], &n1);
 | 
						|
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C' */
 | 
						|
 | 
						|
		    cherk_("U", "C", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[1], &n1);
 | 
						|
		    cherk_("L", "C", &n2, k, alpha, &a[(n1 + 1) * a_dim1 + 1],
 | 
						|
			     lda, beta, &c__[2], &n1);
 | 
						|
		    cgemm_("C", "N", &n1, &n2, k, &calpha, &a[a_dim1 + 1], 
 | 
						|
			    lda, &a[(n1 + 1) * a_dim1 + 1], lda, &cbeta, &c__[
 | 
						|
			    n1 * n1 + 1], &n1);
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              N is odd, TRANSR = 'C', and UPLO = 'U' */
 | 
						|
 | 
						|
		if (notrans) {
 | 
						|
 | 
						|
/*                 N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N' */
 | 
						|
 | 
						|
		    cherk_("U", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[n2 * n2 + 1], &n2);
 | 
						|
		    cherk_("L", "N", &n2, k, alpha, &a[n1 + 1 + a_dim1], lda, 
 | 
						|
			    beta, &c__[n1 * n2 + 1], &n2);
 | 
						|
		    cgemm_("N", "C", &n2, &n1, k, &calpha, &a[n1 + 1 + a_dim1]
 | 
						|
			    , lda, &a[a_dim1 + 1], lda, &cbeta, &c__[1], &n2);
 | 
						|
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C' */
 | 
						|
 | 
						|
		    cherk_("U", "C", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[n2 * n2 + 1], &n2);
 | 
						|
		    cherk_("L", "C", &n2, k, alpha, &a[(n1 + 1) * a_dim1 + 1],
 | 
						|
			     lda, beta, &c__[n1 * n2 + 1], &n2);
 | 
						|
		    cgemm_("C", "N", &n2, &n1, k, &calpha, &a[(n1 + 1) * 
 | 
						|
			    a_dim1 + 1], lda, &a[a_dim1 + 1], lda, &cbeta, &
 | 
						|
			    c__[1], &n2);
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        N is even */
 | 
						|
 | 
						|
	if (normaltransr) {
 | 
						|
 | 
						|
/*           N is even and TRANSR = 'N' */
 | 
						|
 | 
						|
	    if (lower) {
 | 
						|
 | 
						|
/*              N is even, TRANSR = 'N', and UPLO = 'L' */
 | 
						|
 | 
						|
		if (notrans) {
 | 
						|
 | 
						|
/*                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' */
 | 
						|
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cherk_("L", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[2], &i__1);
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cherk_("U", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda, 
 | 
						|
			    beta, &c__[1], &i__1);
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cgemm_("N", "C", &nk, &nk, k, &calpha, &a[nk + 1 + a_dim1]
 | 
						|
			    , lda, &a[a_dim1 + 1], lda, &cbeta, &c__[nk + 2], 
 | 
						|
			    &i__1);
 | 
						|
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C' */
 | 
						|
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cherk_("L", "C", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[2], &i__1);
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cherk_("U", "C", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
 | 
						|
			     lda, beta, &c__[1], &i__1);
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cgemm_("C", "N", &nk, &nk, k, &calpha, &a[(nk + 1) * 
 | 
						|
			    a_dim1 + 1], lda, &a[a_dim1 + 1], lda, &cbeta, &
 | 
						|
			    c__[nk + 2], &i__1);
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              N is even, TRANSR = 'N', and UPLO = 'U' */
 | 
						|
 | 
						|
		if (notrans) {
 | 
						|
 | 
						|
/*                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' */
 | 
						|
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cherk_("L", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[nk + 2], &i__1);
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cherk_("U", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda, 
 | 
						|
			    beta, &c__[nk + 1], &i__1);
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cgemm_("N", "C", &nk, &nk, k, &calpha, &a[a_dim1 + 1], 
 | 
						|
			    lda, &a[nk + 1 + a_dim1], lda, &cbeta, &c__[1], &
 | 
						|
			    i__1);
 | 
						|
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C' */
 | 
						|
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cherk_("L", "C", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[nk + 2], &i__1);
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cherk_("U", "C", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
 | 
						|
			     lda, beta, &c__[nk + 1], &i__1);
 | 
						|
		    i__1 = *n + 1;
 | 
						|
		    cgemm_("C", "N", &nk, &nk, k, &calpha, &a[a_dim1 + 1], 
 | 
						|
			    lda, &a[(nk + 1) * a_dim1 + 1], lda, &cbeta, &c__[
 | 
						|
			    1], &i__1);
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           N is even, and TRANSR = 'C' */
 | 
						|
 | 
						|
	    if (lower) {
 | 
						|
 | 
						|
/*              N is even, TRANSR = 'C', and UPLO = 'L' */
 | 
						|
 | 
						|
		if (notrans) {
 | 
						|
 | 
						|
/*                 N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N' */
 | 
						|
 | 
						|
		    cherk_("U", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[nk + 1], &nk);
 | 
						|
		    cherk_("L", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda, 
 | 
						|
			    beta, &c__[1], &nk);
 | 
						|
		    cgemm_("N", "C", &nk, &nk, k, &calpha, &a[a_dim1 + 1], 
 | 
						|
			    lda, &a[nk + 1 + a_dim1], lda, &cbeta, &c__[(nk + 
 | 
						|
			    1) * nk + 1], &nk);
 | 
						|
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C' */
 | 
						|
 | 
						|
		    cherk_("U", "C", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[nk + 1], &nk);
 | 
						|
		    cherk_("L", "C", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
 | 
						|
			     lda, beta, &c__[1], &nk);
 | 
						|
		    cgemm_("C", "N", &nk, &nk, k, &calpha, &a[a_dim1 + 1], 
 | 
						|
			    lda, &a[(nk + 1) * a_dim1 + 1], lda, &cbeta, &c__[
 | 
						|
			    (nk + 1) * nk + 1], &nk);
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              N is even, TRANSR = 'C', and UPLO = 'U' */
 | 
						|
 | 
						|
		if (notrans) {
 | 
						|
 | 
						|
/*                 N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N' */
 | 
						|
 | 
						|
		    cherk_("U", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[nk * (nk + 1) + 1], &nk);
 | 
						|
		    cherk_("L", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda, 
 | 
						|
			    beta, &c__[nk * nk + 1], &nk);
 | 
						|
		    cgemm_("N", "C", &nk, &nk, k, &calpha, &a[nk + 1 + a_dim1]
 | 
						|
			    , lda, &a[a_dim1 + 1], lda, &cbeta, &c__[1], &nk);
 | 
						|
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C' */
 | 
						|
 | 
						|
		    cherk_("U", "C", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
 | 
						|
			     &c__[nk * (nk + 1) + 1], &nk);
 | 
						|
		    cherk_("L", "C", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
 | 
						|
			     lda, beta, &c__[nk * nk + 1], &nk);
 | 
						|
		    cgemm_("C", "N", &nk, &nk, k, &calpha, &a[(nk + 1) * 
 | 
						|
			    a_dim1 + 1], lda, &a[a_dim1 + 1], lda, &cbeta, &
 | 
						|
			    c__[1], &nk);
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of CHFRK */
 | 
						|
 | 
						|
} /* chfrk_ */
 | 
						|
 |