980 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			980 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b CGEBAL */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CGEBAL + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgebal.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgebal.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgebal.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          JOB */
 | 
						|
/*       INTEGER            IHI, ILO, INFO, LDA, N */
 | 
						|
/*       REAL               SCALE( * ) */
 | 
						|
/*       COMPLEX            A( LDA, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > CGEBAL balances a general complex matrix A.  This involves, first, */
 | 
						|
/* > permuting A by a similarity transformation to isolate eigenvalues */
 | 
						|
/* > in the first 1 to ILO-1 and last IHI+1 to N elements on the */
 | 
						|
/* > diagonal; and second, applying a diagonal similarity transformation */
 | 
						|
/* > to rows and columns ILO to IHI to make the rows and columns as */
 | 
						|
/* > close in norm as possible.  Both steps are optional. */
 | 
						|
/* > */
 | 
						|
/* > Balancing may reduce the 1-norm of the matrix, and improve the */
 | 
						|
/* > accuracy of the computed eigenvalues and/or eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] JOB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOB is CHARACTER*1 */
 | 
						|
/* >          Specifies the operations to be performed on A: */
 | 
						|
/* >          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0 */
 | 
						|
/* >                  for i = 1,...,N; */
 | 
						|
/* >          = 'P':  permute only; */
 | 
						|
/* >          = 'S':  scale only; */
 | 
						|
/* >          = 'B':  both permute and scale. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is COMPLEX array, dimension (LDA,N) */
 | 
						|
/* >          On entry, the input matrix A. */
 | 
						|
/* >          On exit,  A is overwritten by the balanced matrix. */
 | 
						|
/* >          If JOB = 'N', A is not referenced. */
 | 
						|
/* >          See Further Details. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ILO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ILO is INTEGER */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > \param[out] IHI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IHI is INTEGER */
 | 
						|
/* >          ILO and IHI are set to integers such that on exit */
 | 
						|
/* >          A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. */
 | 
						|
/* >          If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] SCALE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SCALE is REAL array, dimension (N) */
 | 
						|
/* >          Details of the permutations and scaling factors applied to */
 | 
						|
/* >          A.  If P(j) is the index of the row and column interchanged */
 | 
						|
/* >          with row and column j and D(j) is the scaling factor */
 | 
						|
/* >          applied to row and column j, then */
 | 
						|
/* >          SCALE(j) = P(j)    for j = 1,...,ILO-1 */
 | 
						|
/* >                   = D(j)    for j = ILO,...,IHI */
 | 
						|
/* >                   = P(j)    for j = IHI+1,...,N. */
 | 
						|
/* >          The order in which the interchanges are made is N to IHI+1, */
 | 
						|
/* >          then 1 to ILO-1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit. */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complexGEcomputational */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  The permutations consist of row and column interchanges which put */
 | 
						|
/* >  the matrix in the form */
 | 
						|
/* > */
 | 
						|
/* >             ( T1   X   Y  ) */
 | 
						|
/* >     P A P = (  0   B   Z  ) */
 | 
						|
/* >             (  0   0   T2 ) */
 | 
						|
/* > */
 | 
						|
/* >  where T1 and T2 are upper triangular matrices whose eigenvalues lie */
 | 
						|
/* >  along the diagonal.  The column indices ILO and IHI mark the starting */
 | 
						|
/* >  and ending columns of the submatrix B. Balancing consists of applying */
 | 
						|
/* >  a diagonal similarity transformation inv(D) * B * D to make the */
 | 
						|
/* >  1-norms of each row of B and its corresponding column nearly equal. */
 | 
						|
/* >  The output matrix is */
 | 
						|
/* > */
 | 
						|
/* >     ( T1     X*D          Y    ) */
 | 
						|
/* >     (  0  inv(D)*B*D  inv(D)*Z ). */
 | 
						|
/* >     (  0      0           T2   ) */
 | 
						|
/* > */
 | 
						|
/* >  Information about the permutations P and the diagonal matrix D is */
 | 
						|
/* >  returned in the vector SCALE. */
 | 
						|
/* > */
 | 
						|
/* >  This subroutine is based on the EISPACK routine CBAL. */
 | 
						|
/* > */
 | 
						|
/* >  Modified by Tzu-Yi Chen, Computer Science Division, University of */
 | 
						|
/* >    California at Berkeley, USA */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int cgebal_(char *job, integer *n, complex *a, integer *lda, 
 | 
						|
	integer *ilo, integer *ihi, real *scale, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2, i__3;
 | 
						|
    real r__1, r__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer iexc;
 | 
						|
    real c__, f, g;
 | 
						|
    integer i__, j, k, l, m;
 | 
						|
    real r__, s;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ int cswap_(integer *, complex *, integer *, 
 | 
						|
	    complex *, integer *);
 | 
						|
    real sfmin1, sfmin2, sfmax1, sfmax2, ca;
 | 
						|
    extern real scnrm2_(integer *, complex *, integer *);
 | 
						|
    real ra;
 | 
						|
    extern integer icamax_(integer *, complex *, integer *);
 | 
						|
    extern real slamch_(char *);
 | 
						|
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
 | 
						|
	    *), xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern logical sisnan_(real *);
 | 
						|
    logical noconv;
 | 
						|
    integer ica, ira;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    --scale;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S") 
 | 
						|
	    && ! lsame_(job, "B")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -4;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("CGEBAL", &i__1, (ftnlen)6);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    k = 1;
 | 
						|
    l = *n;
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	goto L210;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(job, "N")) {
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    scale[i__] = 1.f;
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
	goto L210;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(job, "S")) {
 | 
						|
	goto L120;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Permutation to isolate eigenvalues if possible */
 | 
						|
 | 
						|
    goto L50;
 | 
						|
 | 
						|
/*     Row and column exchange. */
 | 
						|
 | 
						|
L20:
 | 
						|
    scale[m] = (real) j;
 | 
						|
    if (j == m) {
 | 
						|
	goto L30;
 | 
						|
    }
 | 
						|
 | 
						|
    cswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
 | 
						|
    i__1 = *n - k + 1;
 | 
						|
    cswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);
 | 
						|
 | 
						|
L30:
 | 
						|
    switch (iexc) {
 | 
						|
	case 1:  goto L40;
 | 
						|
	case 2:  goto L80;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Search for rows isolating an eigenvalue and push them down. */
 | 
						|
 | 
						|
L40:
 | 
						|
    if (l == 1) {
 | 
						|
	goto L210;
 | 
						|
    }
 | 
						|
    --l;
 | 
						|
 | 
						|
L50:
 | 
						|
    for (j = l; j >= 1; --j) {
 | 
						|
 | 
						|
	i__1 = l;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    if (i__ == j) {
 | 
						|
		goto L60;
 | 
						|
	    }
 | 
						|
	    i__2 = j + i__ * a_dim1;
 | 
						|
	    if (a[i__2].r != 0.f || r_imag(&a[j + i__ * a_dim1]) != 0.f) {
 | 
						|
		goto L70;
 | 
						|
	    }
 | 
						|
L60:
 | 
						|
	    ;
 | 
						|
	}
 | 
						|
 | 
						|
	m = l;
 | 
						|
	iexc = 1;
 | 
						|
	goto L20;
 | 
						|
L70:
 | 
						|
	;
 | 
						|
    }
 | 
						|
 | 
						|
    goto L90;
 | 
						|
 | 
						|
/*     Search for columns isolating an eigenvalue and push them left. */
 | 
						|
 | 
						|
L80:
 | 
						|
    ++k;
 | 
						|
 | 
						|
L90:
 | 
						|
    i__1 = l;
 | 
						|
    for (j = k; j <= i__1; ++j) {
 | 
						|
 | 
						|
	i__2 = l;
 | 
						|
	for (i__ = k; i__ <= i__2; ++i__) {
 | 
						|
	    if (i__ == j) {
 | 
						|
		goto L100;
 | 
						|
	    }
 | 
						|
	    i__3 = i__ + j * a_dim1;
 | 
						|
	    if (a[i__3].r != 0.f || r_imag(&a[i__ + j * a_dim1]) != 0.f) {
 | 
						|
		goto L110;
 | 
						|
	    }
 | 
						|
L100:
 | 
						|
	    ;
 | 
						|
	}
 | 
						|
 | 
						|
	m = k;
 | 
						|
	iexc = 2;
 | 
						|
	goto L20;
 | 
						|
L110:
 | 
						|
	;
 | 
						|
    }
 | 
						|
 | 
						|
L120:
 | 
						|
    i__1 = l;
 | 
						|
    for (i__ = k; i__ <= i__1; ++i__) {
 | 
						|
	scale[i__] = 1.f;
 | 
						|
/* L130: */
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(job, "P")) {
 | 
						|
	goto L210;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Balance the submatrix in rows K to L. */
 | 
						|
 | 
						|
/*     Iterative loop for norm reduction */
 | 
						|
 | 
						|
    sfmin1 = slamch_("S") / slamch_("P");
 | 
						|
    sfmax1 = 1.f / sfmin1;
 | 
						|
    sfmin2 = sfmin1 * 2.f;
 | 
						|
    sfmax2 = 1.f / sfmin2;
 | 
						|
L140:
 | 
						|
    noconv = FALSE_;
 | 
						|
 | 
						|
    i__1 = l;
 | 
						|
    for (i__ = k; i__ <= i__1; ++i__) {
 | 
						|
 | 
						|
	i__2 = l - k + 1;
 | 
						|
	c__ = scnrm2_(&i__2, &a[k + i__ * a_dim1], &c__1);
 | 
						|
	i__2 = l - k + 1;
 | 
						|
	r__ = scnrm2_(&i__2, &a[i__ + k * a_dim1], lda);
 | 
						|
	ica = icamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
 | 
						|
	ca = c_abs(&a[ica + i__ * a_dim1]);
 | 
						|
	i__2 = *n - k + 1;
 | 
						|
	ira = icamax_(&i__2, &a[i__ + k * a_dim1], lda);
 | 
						|
	ra = c_abs(&a[i__ + (ira + k - 1) * a_dim1]);
 | 
						|
 | 
						|
/*        Guard against zero C or R due to underflow. */
 | 
						|
 | 
						|
	if (c__ == 0.f || r__ == 0.f) {
 | 
						|
	    goto L200;
 | 
						|
	}
 | 
						|
	g = r__ / 2.f;
 | 
						|
	f = 1.f;
 | 
						|
	s = c__ + r__;
 | 
						|
L160:
 | 
						|
/* Computing MAX */
 | 
						|
	r__1 = f2cmax(f,c__);
 | 
						|
/* Computing MIN */
 | 
						|
	r__2 = f2cmin(r__,g);
 | 
						|
	if (c__ >= g || f2cmax(r__1,ca) >= sfmax2 || f2cmin(r__2,ra) <= sfmin2) {
 | 
						|
	    goto L170;
 | 
						|
	}
 | 
						|
	r__1 = c__ + f + ca + r__ + g + ra;
 | 
						|
	if (sisnan_(&r__1)) {
 | 
						|
 | 
						|
/*           Exit if NaN to avoid infinite loop */
 | 
						|
 | 
						|
	    *info = -3;
 | 
						|
	    i__2 = -(*info);
 | 
						|
	    xerbla_("CGEBAL", &i__2, (ftnlen)6);
 | 
						|
	    return 0;
 | 
						|
	}
 | 
						|
	f *= 2.f;
 | 
						|
	c__ *= 2.f;
 | 
						|
	ca *= 2.f;
 | 
						|
	r__ /= 2.f;
 | 
						|
	g /= 2.f;
 | 
						|
	ra /= 2.f;
 | 
						|
	goto L160;
 | 
						|
 | 
						|
L170:
 | 
						|
	g = c__ / 2.f;
 | 
						|
L180:
 | 
						|
/* Computing MIN */
 | 
						|
	r__1 = f2cmin(f,c__), r__1 = f2cmin(r__1,g);
 | 
						|
	if (g < r__ || f2cmax(r__,ra) >= sfmax2 || f2cmin(r__1,ca) <= sfmin2) {
 | 
						|
	    goto L190;
 | 
						|
	}
 | 
						|
	f /= 2.f;
 | 
						|
	c__ /= 2.f;
 | 
						|
	g /= 2.f;
 | 
						|
	ca /= 2.f;
 | 
						|
	r__ *= 2.f;
 | 
						|
	ra *= 2.f;
 | 
						|
	goto L180;
 | 
						|
 | 
						|
/*        Now balance. */
 | 
						|
 | 
						|
L190:
 | 
						|
	if (c__ + r__ >= s * .95f) {
 | 
						|
	    goto L200;
 | 
						|
	}
 | 
						|
	if (f < 1.f && scale[i__] < 1.f) {
 | 
						|
	    if (f * scale[i__] <= sfmin1) {
 | 
						|
		goto L200;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (f > 1.f && scale[i__] > 1.f) {
 | 
						|
	    if (scale[i__] >= sfmax1 / f) {
 | 
						|
		goto L200;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	g = 1.f / f;
 | 
						|
	scale[i__] *= f;
 | 
						|
	noconv = TRUE_;
 | 
						|
 | 
						|
	i__2 = *n - k + 1;
 | 
						|
	csscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
 | 
						|
	csscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);
 | 
						|
 | 
						|
L200:
 | 
						|
	;
 | 
						|
    }
 | 
						|
 | 
						|
    if (noconv) {
 | 
						|
	goto L140;
 | 
						|
    }
 | 
						|
 | 
						|
L210:
 | 
						|
    *ilo = k;
 | 
						|
    *ihi = l;
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of CGEBAL */
 | 
						|
 | 
						|
} /* cgebal_ */
 | 
						|
 |