278 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algorithm.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGBTF2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbtf2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbtf2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbtf2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, KL, KU, LDAB, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX            AB( LDAB, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGBTF2 computes an LU factorization of a complex m-by-n band matrix
 | 
						|
*> A using partial pivoting with row interchanges.
 | 
						|
*>
 | 
						|
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>          The number of subdiagonals within the band of A.  KL >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>          The number of superdiagonals within the band of A.  KU >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is COMPLEX array, dimension (LDAB,N)
 | 
						|
*>          On entry, the matrix A in band storage, in rows KL+1 to
 | 
						|
*>          2*KL+KU+1; rows 1 to KL of the array need not be set.
 | 
						|
*>          The j-th column of A is stored in the j-th column of the
 | 
						|
*>          array AB as follows:
 | 
						|
*>          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
 | 
						|
*>
 | 
						|
*>          On exit, details of the factorization: U is stored as an
 | 
						|
*>          upper triangular band matrix with KL+KU superdiagonals in
 | 
						|
*>          rows 1 to KL+KU+1, and the multipliers used during the
 | 
						|
*>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
 | 
						|
*>          See below for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (min(M,N))
 | 
						|
*>          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | 
						|
*>          matrix was interchanged with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
 | 
						|
*>               has been completed, but the factor U is exactly
 | 
						|
*>               singular, and division by zero will occur if it is used
 | 
						|
*>               to solve a system of equations.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexGBcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The band storage scheme is illustrated by the following example, when
 | 
						|
*>  M = N = 6, KL = 2, KU = 1:
 | 
						|
*>
 | 
						|
*>  On entry:                       On exit:
 | 
						|
*>
 | 
						|
*>      *    *    *    +    +    +       *    *    *   u14  u25  u36
 | 
						|
*>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
 | 
						|
*>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
 | 
						|
*>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
 | 
						|
*>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
 | 
						|
*>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
 | 
						|
*>
 | 
						|
*>  Array elements marked * are not used by the routine; elements marked
 | 
						|
*>  + need not be set on entry, but are required by the routine to store
 | 
						|
*>  elements of U, because of fill-in resulting from the row
 | 
						|
*>  interchanges.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, KL, KU, LDAB, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX            AB( LDAB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
 | 
						|
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, JP, JU, KM, KV
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ICAMAX
 | 
						|
      EXTERNAL           ICAMAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGERU, CSCAL, CSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     KV is the number of superdiagonals in the factor U, allowing for
 | 
						|
*     fill-in.
 | 
						|
*
 | 
						|
      KV = KU + KL
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( KL.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( KU.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDAB.LT.KL+KV+1 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGBTF2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Gaussian elimination with partial pivoting
 | 
						|
*
 | 
						|
*     Set fill-in elements in columns KU+2 to KV to zero.
 | 
						|
*
 | 
						|
      DO 20 J = KU + 2, MIN( KV, N )
 | 
						|
         DO 10 I = KV - J + 2, KL
 | 
						|
            AB( I, J ) = ZERO
 | 
						|
   10    CONTINUE
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
*     JU is the index of the last column affected by the current stage
 | 
						|
*     of the factorization.
 | 
						|
*
 | 
						|
      JU = 1
 | 
						|
*
 | 
						|
      DO 40 J = 1, MIN( M, N )
 | 
						|
*
 | 
						|
*        Set fill-in elements in column J+KV to zero.
 | 
						|
*
 | 
						|
         IF( J+KV.LE.N ) THEN
 | 
						|
            DO 30 I = 1, KL
 | 
						|
               AB( I, J+KV ) = ZERO
 | 
						|
   30       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Find pivot and test for singularity. KM is the number of
 | 
						|
*        subdiagonal elements in the current column.
 | 
						|
*
 | 
						|
         KM = MIN( KL, M-J )
 | 
						|
         JP = ICAMAX( KM+1, AB( KV+1, J ), 1 )
 | 
						|
         IPIV( J ) = JP + J - 1
 | 
						|
         IF( AB( KV+JP, J ).NE.ZERO ) THEN
 | 
						|
            JU = MAX( JU, MIN( J+KU+JP-1, N ) )
 | 
						|
*
 | 
						|
*           Apply interchange to columns J to JU.
 | 
						|
*
 | 
						|
            IF( JP.NE.1 )
 | 
						|
     $         CALL CSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1,
 | 
						|
     $                     AB( KV+1, J ), LDAB-1 )
 | 
						|
            IF( KM.GT.0 ) THEN
 | 
						|
*
 | 
						|
*              Compute multipliers.
 | 
						|
*
 | 
						|
               CALL CSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 )
 | 
						|
*
 | 
						|
*              Update trailing submatrix within the band.
 | 
						|
*
 | 
						|
               IF( JU.GT.J )
 | 
						|
     $            CALL CGERU( KM, JU-J, -ONE, AB( KV+2, J ), 1,
 | 
						|
     $                        AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ),
 | 
						|
     $                        LDAB-1 )
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           If pivot is zero, set INFO to the index of the pivot
 | 
						|
*           unless a zero pivot has already been found.
 | 
						|
*
 | 
						|
            IF( INFO.EQ.0 )
 | 
						|
     $         INFO = J
 | 
						|
         END IF
 | 
						|
   40 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGBTF2
 | 
						|
*
 | 
						|
      END
 |