OpenBLAS/lapack-netlib/TESTING/MATGEN/clatm5.c

1032 lines
30 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
/* Table of constant values */
static complex c_b1 = {1.f,0.f};
static complex c_b3 = {0.f,0.f};
static complex c_b5 = {20.f,0.f};
/* > \brief \b CLATM5 */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE CLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD, */
/* E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA, */
/* QBLCKB ) */
/* INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N, */
/* $ PRTYPE, QBLCKA, QBLCKB */
/* REAL ALPHA */
/* COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ), */
/* $ D( LDD, * ), E( LDE, * ), F( LDF, * ), */
/* $ L( LDL, * ), R( LDR, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CLATM5 generates matrices involved in the Generalized Sylvester */
/* > equation: */
/* > */
/* > A * R - L * B = C */
/* > D * R - L * E = F */
/* > */
/* > They also satisfy (the diagonalization condition) */
/* > */
/* > [ I -L ] ( [ A -C ], [ D -F ] ) [ I R ] = ( [ A ], [ D ] ) */
/* > [ I ] ( [ B ] [ E ] ) [ I ] ( [ B ] [ E ] ) */
/* > */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] PRTYPE */
/* > \verbatim */
/* > PRTYPE is INTEGER */
/* > "Points" to a certain type of the matrices to generate */
/* > (see further details). */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > Specifies the order of A and D and the number of rows in */
/* > C, F, R and L. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > Specifies the order of B and E and the number of columns in */
/* > C, F, R and L. */
/* > \endverbatim */
/* > */
/* > \param[out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA, M). */
/* > On exit A M-by-M is initialized according to PRTYPE. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of A. */
/* > \endverbatim */
/* > */
/* > \param[out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB, N). */
/* > On exit B N-by-N is initialized according to PRTYPE. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of B. */
/* > \endverbatim */
/* > */
/* > \param[out] C */
/* > \verbatim */
/* > C is COMPLEX array, dimension (LDC, N). */
/* > On exit C M-by-N is initialized according to PRTYPE. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of C. */
/* > \endverbatim */
/* > */
/* > \param[out] D */
/* > \verbatim */
/* > D is COMPLEX array, dimension (LDD, M). */
/* > On exit D M-by-M is initialized according to PRTYPE. */
/* > \endverbatim */
/* > */
/* > \param[in] LDD */
/* > \verbatim */
/* > LDD is INTEGER */
/* > The leading dimension of D. */
/* > \endverbatim */
/* > */
/* > \param[out] E */
/* > \verbatim */
/* > E is COMPLEX array, dimension (LDE, N). */
/* > On exit E N-by-N is initialized according to PRTYPE. */
/* > \endverbatim */
/* > */
/* > \param[in] LDE */
/* > \verbatim */
/* > LDE is INTEGER */
/* > The leading dimension of E. */
/* > \endverbatim */
/* > */
/* > \param[out] F */
/* > \verbatim */
/* > F is COMPLEX array, dimension (LDF, N). */
/* > On exit F M-by-N is initialized according to PRTYPE. */
/* > \endverbatim */
/* > */
/* > \param[in] LDF */
/* > \verbatim */
/* > LDF is INTEGER */
/* > The leading dimension of F. */
/* > \endverbatim */
/* > */
/* > \param[out] R */
/* > \verbatim */
/* > R is COMPLEX array, dimension (LDR, N). */
/* > On exit R M-by-N is initialized according to PRTYPE. */
/* > \endverbatim */
/* > */
/* > \param[in] LDR */
/* > \verbatim */
/* > LDR is INTEGER */
/* > The leading dimension of R. */
/* > \endverbatim */
/* > */
/* > \param[out] L */
/* > \verbatim */
/* > L is COMPLEX array, dimension (LDL, N). */
/* > On exit L M-by-N is initialized according to PRTYPE. */
/* > \endverbatim */
/* > */
/* > \param[in] LDL */
/* > \verbatim */
/* > LDL is INTEGER */
/* > The leading dimension of L. */
/* > \endverbatim */
/* > */
/* > \param[in] ALPHA */
/* > \verbatim */
/* > ALPHA is REAL */
/* > Parameter used in generating PRTYPE = 1 and 5 matrices. */
/* > \endverbatim */
/* > */
/* > \param[in] QBLCKA */
/* > \verbatim */
/* > QBLCKA is INTEGER */
/* > When PRTYPE = 3, specifies the distance between 2-by-2 */
/* > blocks on the diagonal in A. Otherwise, QBLCKA is not */
/* > referenced. QBLCKA > 1. */
/* > \endverbatim */
/* > */
/* > \param[in] QBLCKB */
/* > \verbatim */
/* > QBLCKB is INTEGER */
/* > When PRTYPE = 3, specifies the distance between 2-by-2 */
/* > blocks on the diagonal in B. Otherwise, QBLCKB is not */
/* > referenced. QBLCKB > 1. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2016 */
/* > \ingroup complex_matgen */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices */
/* > */
/* > A : if (i == j) then A(i, j) = 1.0 */
/* > if (j == i + 1) then A(i, j) = -1.0 */
/* > else A(i, j) = 0.0, i, j = 1...M */
/* > */
/* > B : if (i == j) then B(i, j) = 1.0 - ALPHA */
/* > if (j == i + 1) then B(i, j) = 1.0 */
/* > else B(i, j) = 0.0, i, j = 1...N */
/* > */
/* > D : if (i == j) then D(i, j) = 1.0 */
/* > else D(i, j) = 0.0, i, j = 1...M */
/* > */
/* > E : if (i == j) then E(i, j) = 1.0 */
/* > else E(i, j) = 0.0, i, j = 1...N */
/* > */
/* > L = R are chosen from [-10...10], */
/* > which specifies the right hand sides (C, F). */
/* > */
/* > PRTYPE = 2 or 3: Triangular and/or quasi- triangular. */
/* > */
/* > A : if (i <= j) then A(i, j) = [-1...1] */
/* > else A(i, j) = 0.0, i, j = 1...M */
/* > */
/* > if (PRTYPE = 3) then */
/* > A(k + 1, k + 1) = A(k, k) */
/* > A(k + 1, k) = [-1...1] */
/* > sign(A(k, k + 1) = -(sin(A(k + 1, k)) */
/* > k = 1, M - 1, QBLCKA */
/* > */
/* > B : if (i <= j) then B(i, j) = [-1...1] */
/* > else B(i, j) = 0.0, i, j = 1...N */
/* > */
/* > if (PRTYPE = 3) then */
/* > B(k + 1, k + 1) = B(k, k) */
/* > B(k + 1, k) = [-1...1] */
/* > sign(B(k, k + 1) = -(sign(B(k + 1, k)) */
/* > k = 1, N - 1, QBLCKB */
/* > */
/* > D : if (i <= j) then D(i, j) = [-1...1]. */
/* > else D(i, j) = 0.0, i, j = 1...M */
/* > */
/* > */
/* > E : if (i <= j) then D(i, j) = [-1...1] */
/* > else E(i, j) = 0.0, i, j = 1...N */
/* > */
/* > L, R are chosen from [-10...10], */
/* > which specifies the right hand sides (C, F). */
/* > */
/* > PRTYPE = 4 Full */
/* > A(i, j) = [-10...10] */
/* > D(i, j) = [-1...1] i,j = 1...M */
/* > B(i, j) = [-10...10] */
/* > E(i, j) = [-1...1] i,j = 1...N */
/* > R(i, j) = [-10...10] */
/* > L(i, j) = [-1...1] i = 1..M ,j = 1...N */
/* > */
/* > L, R specifies the right hand sides (C, F). */
/* > */
/* > PRTYPE = 5 special case common and/or close eigs. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ void clatm5_(integer *prtype, integer *m, integer *n, complex
*a, integer *lda, complex *b, integer *ldb, complex *c__, integer *
ldc, complex *d__, integer *ldd, complex *e, integer *lde, complex *f,
integer *ldf, complex *r__, integer *ldr, complex *l, integer *ldl,
real *alpha, integer *qblcka, integer *qblckb)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
d_offset, e_dim1, e_offset, f_dim1, f_offset, l_dim1, l_offset,
r_dim1, r_offset, i__1, i__2, i__3, i__4;
doublereal d__1;
complex q__1, q__2, q__3, q__4, q__5;
/* Local variables */
integer i__, j, k;
extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
integer *, complex *, complex *, integer *, complex *, integer *,
complex *, complex *, integer *);
complex imeps, reeps;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2016 */
/* ===================================================================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
d_dim1 = *ldd;
d_offset = 1 + d_dim1 * 1;
d__ -= d_offset;
e_dim1 = *lde;
e_offset = 1 + e_dim1 * 1;
e -= e_offset;
f_dim1 = *ldf;
f_offset = 1 + f_dim1 * 1;
f -= f_offset;
r_dim1 = *ldr;
r_offset = 1 + r_dim1 * 1;
r__ -= r_offset;
l_dim1 = *ldl;
l_offset = 1 + l_dim1 * 1;
l -= l_offset;
/* Function Body */
if (*prtype == 1) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *m;
for (j = 1; j <= i__2; ++j) {
if (i__ == j) {
i__3 = i__ + j * a_dim1;
a[i__3].r = 1.f, a[i__3].i = 0.f;
i__3 = i__ + j * d_dim1;
d__[i__3].r = 1.f, d__[i__3].i = 0.f;
} else if (i__ == j - 1) {
i__3 = i__ + j * a_dim1;
q__1.r = -1.f, q__1.i = 0.f;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
i__3 = i__ + j * d_dim1;
d__[i__3].r = 0.f, d__[i__3].i = 0.f;
} else {
i__3 = i__ + j * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
i__3 = i__ + j * d_dim1;
d__[i__3].r = 0.f, d__[i__3].i = 0.f;
}
/* L10: */
}
/* L20: */
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
if (i__ == j) {
i__3 = i__ + j * b_dim1;
q__1.r = 1.f - *alpha, q__1.i = 0.f;
b[i__3].r = q__1.r, b[i__3].i = q__1.i;
i__3 = i__ + j * e_dim1;
e[i__3].r = 1.f, e[i__3].i = 0.f;
} else if (i__ == j - 1) {
i__3 = i__ + j * b_dim1;
b[i__3].r = 1.f, b[i__3].i = 0.f;
i__3 = i__ + j * e_dim1;
e[i__3].r = 0.f, e[i__3].i = 0.f;
} else {
i__3 = i__ + j * b_dim1;
b[i__3].r = 0.f, b[i__3].i = 0.f;
i__3 = i__ + j * e_dim1;
e[i__3].r = 0.f, e[i__3].i = 0.f;
}
/* L30: */
}
/* L40: */
}
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
i__3 = i__ + j * r_dim1;
i__4 = i__ / j;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
+ q__2.i * 20.f;
r__[i__3].r = q__1.r, r__[i__3].i = q__1.i;
i__3 = i__ + j * l_dim1;
i__4 = i__ + j * r_dim1;
l[i__3].r = r__[i__4].r, l[i__3].i = r__[i__4].i;
/* L50: */
}
/* L60: */
}
} else if (*prtype == 2 || *prtype == 3) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *m;
for (j = 1; j <= i__2; ++j) {
if (i__ <= j) {
i__3 = i__ + j * a_dim1;
q__4.r = (real) i__, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r *
0.f + q__2.i * 2.f;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
i__3 = i__ + j * d_dim1;
i__4 = i__ * j;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r *
0.f + q__2.i * 2.f;
d__[i__3].r = q__1.r, d__[i__3].i = q__1.i;
} else {
i__3 = i__ + j * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
i__3 = i__ + j * d_dim1;
d__[i__3].r = 0.f, d__[i__3].i = 0.f;
}
/* L70: */
}
/* L80: */
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
if (i__ <= j) {
i__3 = i__ + j * b_dim1;
i__4 = i__ + j;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r *
0.f + q__2.i * 2.f;
b[i__3].r = q__1.r, b[i__3].i = q__1.i;
i__3 = i__ + j * e_dim1;
q__4.r = (real) j, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r *
0.f + q__2.i * 2.f;
e[i__3].r = q__1.r, e[i__3].i = q__1.i;
} else {
i__3 = i__ + j * b_dim1;
b[i__3].r = 0.f, b[i__3].i = 0.f;
i__3 = i__ + j * e_dim1;
e[i__3].r = 0.f, e[i__3].i = 0.f;
}
/* L90: */
}
/* L100: */
}
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
i__3 = i__ + j * r_dim1;
i__4 = i__ * j;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
+ q__2.i * 20.f;
r__[i__3].r = q__1.r, r__[i__3].i = q__1.i;
i__3 = i__ + j * l_dim1;
i__4 = i__ + j;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
+ q__2.i * 20.f;
l[i__3].r = q__1.r, l[i__3].i = q__1.i;
/* L110: */
}
/* L120: */
}
if (*prtype == 3) {
if (*qblcka <= 1) {
*qblcka = 2;
}
i__1 = *m - 1;
i__2 = *qblcka;
for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
i__3 = k + 1 + (k + 1) * a_dim1;
i__4 = k + k * a_dim1;
a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
i__3 = k + 1 + k * a_dim1;
c_sin(&q__2, &a[k + (k + 1) * a_dim1]);
q__1.r = -q__2.r, q__1.i = -q__2.i;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L130: */
}
if (*qblckb <= 1) {
*qblckb = 2;
}
i__2 = *n - 1;
i__1 = *qblckb;
for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
i__3 = k + 1 + (k + 1) * b_dim1;
i__4 = k + k * b_dim1;
b[i__3].r = b[i__4].r, b[i__3].i = b[i__4].i;
i__3 = k + 1 + k * b_dim1;
c_sin(&q__2, &b[k + (k + 1) * b_dim1]);
q__1.r = -q__2.r, q__1.i = -q__2.i;
b[i__3].r = q__1.r, b[i__3].i = q__1.i;
/* L140: */
}
}
} else if (*prtype == 4) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *m;
for (j = 1; j <= i__2; ++j) {
i__3 = i__ + j * a_dim1;
i__4 = i__ * j;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
+ q__2.i * 20.f;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
i__3 = i__ + j * d_dim1;
i__4 = i__ + j;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f +
q__2.i * 2.f;
d__[i__3].r = q__1.r, d__[i__3].i = q__1.i;
/* L150: */
}
/* L160: */
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
i__3 = i__ + j * b_dim1;
i__4 = i__ + j;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
+ q__2.i * 20.f;
b[i__3].r = q__1.r, b[i__3].i = q__1.i;
i__3 = i__ + j * e_dim1;
i__4 = i__ * j;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f +
q__2.i * 2.f;
e[i__3].r = q__1.r, e[i__3].i = q__1.i;
/* L170: */
}
/* L180: */
}
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
i__3 = i__ + j * r_dim1;
i__4 = j / i__;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
+ q__2.i * 20.f;
r__[i__3].r = q__1.r, r__[i__3].i = q__1.i;
i__3 = i__ + j * l_dim1;
i__4 = i__ * j;
q__4.r = (real) i__4, q__4.i = 0.f;
c_sin(&q__3, &q__4);
q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f +
q__2.i * 2.f;
l[i__3].r = q__1.r, l[i__3].i = q__1.i;
/* L190: */
}
/* L200: */
}
} else if (*prtype >= 5) {
q__3.r = 1.f, q__3.i = 0.f;
q__2.r = q__3.r * 20.f - q__3.i * 0.f, q__2.i = q__3.r * 0.f + q__3.i
* 20.f;
q__1.r = q__2.r / *alpha, q__1.i = q__2.i / *alpha;
reeps.r = q__1.r, reeps.i = q__1.i;
q__2.r = -1.5f, q__2.i = 0.f;
q__1.r = q__2.r / *alpha, q__1.i = q__2.i / *alpha;
imeps.r = q__1.r, imeps.i = q__1.i;
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
i__3 = i__ + j * r_dim1;
i__4 = i__ * j;
q__5.r = (real) i__4, q__5.i = 0.f;
c_sin(&q__4, &q__5);
q__3.r = .5f - q__4.r, q__3.i = 0.f - q__4.i;
q__2.r = *alpha * q__3.r, q__2.i = *alpha * q__3.i;
c_div(&q__1, &q__2, &c_b5);
r__[i__3].r = q__1.r, r__[i__3].i = q__1.i;
i__3 = i__ + j * l_dim1;
i__4 = i__ + j;
q__5.r = (real) i__4, q__5.i = 0.f;
c_sin(&q__4, &q__5);
q__3.r = .5f - q__4.r, q__3.i = 0.f - q__4.i;
q__2.r = *alpha * q__3.r, q__2.i = *alpha * q__3.i;
c_div(&q__1, &q__2, &c_b5);
l[i__3].r = q__1.r, l[i__3].i = q__1.i;
/* L210: */
}
/* L220: */
}
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__ + i__ * d_dim1;
d__[i__2].r = 1.f, d__[i__2].i = 0.f;
/* L230: */
}
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ <= 4) {
i__2 = i__ + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;
if (i__ > 2) {
i__2 = i__ + i__ * a_dim1;
q__1.r = reeps.r + 1.f, q__1.i = reeps.i + 0.f;
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
}
if (i__ % 2 != 0 && i__ < *m) {
i__2 = i__ + (i__ + 1) * a_dim1;
a[i__2].r = imeps.r, a[i__2].i = imeps.i;
} else if (i__ > 1) {
i__2 = i__ + (i__ - 1) * a_dim1;
q__1.r = -imeps.r, q__1.i = -imeps.i;
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
}
} else if (i__ <= 8) {
if (i__ <= 6) {
i__2 = i__ + i__ * a_dim1;
a[i__2].r = reeps.r, a[i__2].i = reeps.i;
} else {
i__2 = i__ + i__ * a_dim1;
q__1.r = -reeps.r, q__1.i = -reeps.i;
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
}
if (i__ % 2 != 0 && i__ < *m) {
i__2 = i__ + (i__ + 1) * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;
} else if (i__ > 1) {
i__2 = i__ + (i__ - 1) * a_dim1;
q__1.r = -1.f, q__1.i = 0.f;
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
}
} else {
i__2 = i__ + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;
if (i__ % 2 != 0 && i__ < *m) {
i__2 = i__ + (i__ + 1) * a_dim1;
d__1 = 2.;
q__1.r = d__1 * imeps.r, q__1.i = d__1 * imeps.i;
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
} else if (i__ > 1) {
i__2 = i__ + (i__ - 1) * a_dim1;
q__2.r = -imeps.r, q__2.i = -imeps.i;
d__1 = 2.;
q__1.r = d__1 * q__2.r, q__1.i = d__1 * q__2.i;
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
}
}
/* L240: */
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__ + i__ * e_dim1;
e[i__2].r = 1.f, e[i__2].i = 0.f;
if (i__ <= 4) {
i__2 = i__ + i__ * b_dim1;
q__1.r = -1.f, q__1.i = 0.f;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
if (i__ > 2) {
i__2 = i__ + i__ * b_dim1;
q__1.r = 1.f - reeps.r, q__1.i = 0.f - reeps.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
}
if (i__ % 2 != 0 && i__ < *n) {
i__2 = i__ + (i__ + 1) * b_dim1;
b[i__2].r = imeps.r, b[i__2].i = imeps.i;
} else if (i__ > 1) {
i__2 = i__ + (i__ - 1) * b_dim1;
q__1.r = -imeps.r, q__1.i = -imeps.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
}
} else if (i__ <= 8) {
if (i__ <= 6) {
i__2 = i__ + i__ * b_dim1;
b[i__2].r = reeps.r, b[i__2].i = reeps.i;
} else {
i__2 = i__ + i__ * b_dim1;
q__1.r = -reeps.r, q__1.i = -reeps.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
}
if (i__ % 2 != 0 && i__ < *n) {
i__2 = i__ + (i__ + 1) * b_dim1;
q__1.r = imeps.r + 1.f, q__1.i = imeps.i + 0.f;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
} else if (i__ > 1) {
i__2 = i__ + (i__ - 1) * b_dim1;
q__2.r = -1.f, q__2.i = 0.f;
q__1.r = q__2.r - imeps.r, q__1.i = q__2.i - imeps.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
}
} else {
i__2 = i__ + i__ * b_dim1;
q__1.r = 1.f - reeps.r, q__1.i = 0.f - reeps.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
if (i__ % 2 != 0 && i__ < *n) {
i__2 = i__ + (i__ + 1) * b_dim1;
d__1 = 2.;
q__1.r = d__1 * imeps.r, q__1.i = d__1 * imeps.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
} else if (i__ > 1) {
i__2 = i__ + (i__ - 1) * b_dim1;
q__2.r = -imeps.r, q__2.i = -imeps.i;
d__1 = 2.;
q__1.r = d__1 * q__2.r, q__1.i = d__1 * q__2.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
}
}
/* L250: */
}
}
/* Compute rhs (C, F) */
cgemm_("N", "N", m, n, m, &c_b1, &a[a_offset], lda, &r__[r_offset], ldr, &
c_b3, &c__[c_offset], ldc);
q__1.r = -1.f, q__1.i = 0.f;
cgemm_("N", "N", m, n, n, &q__1, &l[l_offset], ldl, &b[b_offset], ldb, &
c_b1, &c__[c_offset], ldc);
cgemm_("N", "N", m, n, m, &c_b1, &d__[d_offset], ldd, &r__[r_offset], ldr,
&c_b3, &f[f_offset], ldf);
q__1.r = -1.f, q__1.i = 0.f;
cgemm_("N", "N", m, n, n, &q__1, &l[l_offset], ldl, &e[e_offset], lde, &
c_b1, &f[f_offset], ldf);
/* End of CLATM5 */
return;
} /* clatm5_ */