137 lines
5.8 KiB
C
137 lines
5.8 KiB
C
/***************************************************************************
|
|
Copyright (c) 2013, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
#if !defined(DOUBLE)
|
|
#define VSETVL(n) RISCV_RVV(vsetvl_e32m2)(n)
|
|
#define FLOAT_V_T vfloat32m2_t
|
|
#define FLOAT_V_T_M1 vfloat32m1_t
|
|
#define VLEV_FLOAT RISCV_RVV(vle32_v_f32m2)
|
|
#define VLSEV_FLOAT RISCV_RVV(vlse32_v_f32m2)
|
|
#ifdef RISCV_0p10_INTRINSICS
|
|
#define VFREDSUM_FLOAT(va, vb, gvl) vfredusum_vs_f32m2_f32m1(v_res, va, vb, gvl)
|
|
#else
|
|
#define VFREDSUM_FLOAT RISCV_RVV(vfredusum_vs_f32m2_f32m1)
|
|
#endif
|
|
#define VFMACCVV_FLOAT RISCV_RVV(vfmacc_vv_f32m2)
|
|
#define VFMVVF_FLOAT RISCV_RVV(vfmv_v_f_f32m2)
|
|
#define VFMVVF_FLOAT_M1 RISCV_RVV(vfmv_v_f_f32m1)
|
|
#define VFMULVV_FLOAT RISCV_RVV(vfmul_vv_f32m2)
|
|
#define xint_t int
|
|
#else
|
|
#define VSETVL(n) RISCV_RVV(vsetvl_e64m2)(n)
|
|
#define FLOAT_V_T vfloat64m2_t
|
|
#define FLOAT_V_T_M1 vfloat64m1_t
|
|
#define VLEV_FLOAT RISCV_RVV(vle64_v_f64m2)
|
|
#define VLSEV_FLOAT RISCV_RVV(vlse64_v_f64m2)
|
|
#ifdef RISCV_0p10_INTRINSICS
|
|
#define VFREDSUM_FLOAT(va, vb, gvl) vfredusum_vs_f64m2_f64m1(v_res, va, vb, gvl)
|
|
#else
|
|
#define VFREDSUM_FLOAT RISCV_RVV(vfredusum_vs_f64m2_f64m1)
|
|
#endif
|
|
#define VFMACCVV_FLOAT RISCV_RVV(vfmacc_vv_f64m2)
|
|
#define VFMVVF_FLOAT RISCV_RVV(vfmv_v_f_f64m2)
|
|
#define VFMVVF_FLOAT_M1 RISCV_RVV(vfmv_v_f_f64m1)
|
|
#define VFMULVV_FLOAT RISCV_RVV(vfmul_vv_f64m2)
|
|
#define xint_t long long
|
|
#endif
|
|
|
|
int CNAME(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
|
|
{
|
|
BLASLONG i = 0, j = 0, k = 0;
|
|
BLASLONG ix = 0, iy = 0;
|
|
FLOAT *a_ptr = a;
|
|
FLOAT temp;
|
|
|
|
FLOAT_V_T va, vr, vx;
|
|
unsigned int gvl = 0;
|
|
FLOAT_V_T_M1 v_res;
|
|
|
|
|
|
if(inc_x == 1){
|
|
for(i = 0; i < n; i++){
|
|
v_res = VFMVVF_FLOAT_M1(0, 1);
|
|
gvl = VSETVL(m);
|
|
j = 0;
|
|
vr = VFMVVF_FLOAT(0, gvl);
|
|
for(k = 0; k < m/gvl; k++){
|
|
va = VLEV_FLOAT(&a_ptr[j], gvl);
|
|
vx = VLEV_FLOAT(&x[j], gvl);
|
|
vr = VFMULVV_FLOAT(va, vx, gvl); // could vfmacc here and reduce outside loop
|
|
v_res = VFREDSUM_FLOAT(vr, v_res, gvl); // but that reordering diverges far enough from scalar path to make tests fail
|
|
j += gvl;
|
|
}
|
|
if(j < m){
|
|
gvl = VSETVL(m-j);
|
|
va = VLEV_FLOAT(&a_ptr[j], gvl);
|
|
vx = VLEV_FLOAT(&x[j], gvl);
|
|
vr = VFMULVV_FLOAT(va, vx, gvl);
|
|
v_res = VFREDSUM_FLOAT(vr, v_res, gvl);
|
|
}
|
|
temp = (FLOAT)EXTRACT_FLOAT(v_res);
|
|
y[iy] += alpha * temp;
|
|
|
|
|
|
iy += inc_y;
|
|
a_ptr += lda;
|
|
}
|
|
}else{
|
|
BLASLONG stride_x = inc_x * sizeof(FLOAT);
|
|
for(i = 0; i < n; i++){
|
|
v_res = VFMVVF_FLOAT_M1(0, 1);
|
|
gvl = VSETVL(m);
|
|
j = 0;
|
|
ix = 0;
|
|
vr = VFMVVF_FLOAT(0, gvl);
|
|
for(k = 0; k < m/gvl; k++){
|
|
va = VLEV_FLOAT(&a_ptr[j], gvl);
|
|
vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
|
|
vr = VFMULVV_FLOAT(va, vx, gvl);
|
|
v_res = VFREDSUM_FLOAT(vr, v_res, gvl);
|
|
j += gvl;
|
|
ix += inc_x * gvl;
|
|
}
|
|
if(j < m){
|
|
gvl = VSETVL(m-j);
|
|
va = VLEV_FLOAT(&a_ptr[j], gvl);
|
|
vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
|
|
vr = VFMULVV_FLOAT(va, vx, gvl);
|
|
v_res = VFREDSUM_FLOAT(vr, v_res, gvl);
|
|
}
|
|
temp = (FLOAT)EXTRACT_FLOAT(v_res);
|
|
y[iy] += alpha * temp;
|
|
|
|
|
|
iy += inc_y;
|
|
a_ptr += lda;
|
|
}
|
|
}
|
|
|
|
|
|
return(0);
|
|
}
|