772 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			772 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> CGELSS solves overdetermined or underdetermined systems for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGELSS + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelss.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelss.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelss.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 | |
| *                          WORK, LWORK, RWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | |
| *       REAL               RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * ), S( * )
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGELSS computes the minimum norm solution to a complex linear
 | |
| *> least squares problem:
 | |
| *>
 | |
| *> Minimize 2-norm(| b - A*x |).
 | |
| *>
 | |
| *> using the singular value decomposition (SVD) of A. A is an M-by-N
 | |
| *> matrix which may be rank-deficient.
 | |
| *>
 | |
| *> Several right hand side vectors b and solution vectors x can be
 | |
| *> handled in a single call; they are stored as the columns of the
 | |
| *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
 | |
| *> X.
 | |
| *>
 | |
| *> The effective rank of A is determined by treating as zero those
 | |
| *> singular values which are less than RCOND times the largest singular
 | |
| *> value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrices B and X. NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, the first min(m,n) rows of A are overwritten with
 | |
| *>          its right singular vectors, stored rowwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,NRHS)
 | |
| *>          On entry, the M-by-NRHS right hand side matrix B.
 | |
| *>          On exit, B is overwritten by the N-by-NRHS solution matrix X.
 | |
| *>          If m >= n and RANK = n, the residual sum-of-squares for
 | |
| *>          the solution in the i-th column is given by the sum of
 | |
| *>          squares of the modulus of elements n+1:m in that column.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension (min(M,N))
 | |
| *>          The singular values of A in decreasing order.
 | |
| *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is REAL
 | |
| *>          RCOND is used to determine the effective rank of A.
 | |
| *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
 | |
| *>          If RCOND < 0, machine precision is used instead.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RANK
 | |
| *> \verbatim
 | |
| *>          RANK is INTEGER
 | |
| *>          The effective rank of A, i.e., the number of singular values
 | |
| *>          which are greater than RCOND*S(1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= 1, and also:
 | |
| *>          LWORK >=  2*min(M,N) + max(M,N,NRHS)
 | |
| *>          For good performance, LWORK should generally be larger.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (5*min(M,N))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  the algorithm for computing the SVD failed to converge;
 | |
| *>                if INFO = i, i off-diagonal elements of an intermediate
 | |
| *>                bidiagonal form did not converge to zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complexGEsolve
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 | |
|      $                   WORK, LWORK, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | |
|       REAL               RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * ), S( * )
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            BL, CHUNK, I, IASCL, IBSCL, IE, IL, IRWORK,
 | |
|      $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
 | |
|      $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
 | |
|       INTEGER            LWORK_CGEQRF, LWORK_CUNMQR, LWORK_CGEBRD,
 | |
|      $                   LWORK_CUNMBR, LWORK_CUNGBR, LWORK_CUNMLQ,
 | |
|      $                   LWORK_CGELQF
 | |
|       REAL               ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       COMPLEX            DUM( 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CBDSQR, CCOPY, CGEBRD, CGELQF, CGEMM, CGEMV,
 | |
|      $                   CGEQRF, CLACPY, CLASCL, CLASET, CSRSCL, CUNGBR,
 | |
|      $                   CUNMBR, CUNMLQ, CUNMQR, SLABAD, SLASCL, SLASET,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       REAL               CLANGE, SLAMCH
 | |
|       EXTERNAL           ILAENV, CLANGE, SLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       MINMN = MIN( M, N )
 | |
|       MAXMN = MAX( M, N )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *      (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace needed at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       CWorkspace refers to complex workspace, and RWorkspace refers
 | |
| *       to real workspace. NB refers to the optimal block size for the
 | |
| *       immediately following subroutine, as returned by ILAENV.)
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          MINWRK = 1
 | |
|          MAXWRK = 1
 | |
|          IF( MINMN.GT.0 ) THEN
 | |
|             MM = M
 | |
|             MNTHR = ILAENV( 6, 'CGELSS', ' ', M, N, NRHS, -1 )
 | |
|             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
 | |
| *
 | |
| *              Path 1a - overdetermined, with many more rows than
 | |
| *                        columns
 | |
| *
 | |
| *              Compute space needed for CGEQRF
 | |
|                CALL CGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
 | |
|                LWORK_CGEQRF=DUM(1)
 | |
| *              Compute space needed for CUNMQR
 | |
|                CALL CUNMQR( 'L', 'C', M, NRHS, N, A, LDA, DUM(1), B,
 | |
|      $                   LDB, DUM(1), -1, INFO )
 | |
|                LWORK_CUNMQR=DUM(1)
 | |
|                MM = N
 | |
|                MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'CGEQRF', ' ', M,
 | |
|      $                       N, -1, -1 ) )
 | |
|                MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'CUNMQR', 'LC',
 | |
|      $                       M, NRHS, N, -1 ) )
 | |
|             END IF
 | |
|             IF( M.GE.N ) THEN
 | |
| *
 | |
| *              Path 1 - overdetermined or exactly determined
 | |
| *
 | |
| *              Compute space needed for CGEBRD
 | |
|                CALL CGEBRD( MM, N, A, LDA, S, DUM(1), DUM(1),
 | |
|      $                      DUM(1), DUM(1), -1, INFO )
 | |
|                LWORK_CGEBRD=DUM(1)
 | |
| *              Compute space needed for CUNMBR
 | |
|                CALL CUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, DUM(1),
 | |
|      $                B, LDB, DUM(1), -1, INFO )
 | |
|                LWORK_CUNMBR=DUM(1)
 | |
| *              Compute space needed for CUNGBR
 | |
|                CALL CUNGBR( 'P', N, N, N, A, LDA, DUM(1),
 | |
|      $                   DUM(1), -1, INFO )
 | |
|                LWORK_CUNGBR=DUM(1)
 | |
| *              Compute total workspace needed 
 | |
|                MAXWRK = MAX( MAXWRK, 2*N + LWORK_CGEBRD )
 | |
|                MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR )
 | |
|                MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR )
 | |
|                MAXWRK = MAX( MAXWRK, N*NRHS )
 | |
|                MINWRK = 2*N + MAX( NRHS, M )
 | |
|             END IF
 | |
|             IF( N.GT.M ) THEN
 | |
|                MINWRK = 2*M + MAX( NRHS, N )
 | |
|                IF( N.GE.MNTHR ) THEN
 | |
| *
 | |
| *                 Path 2a - underdetermined, with many more columns
 | |
| *                 than rows
 | |
| *
 | |
| *                 Compute space needed for CGELQF
 | |
|                   CALL CGELQF( M, N, A, LDA, DUM(1), DUM(1),
 | |
|      $                -1, INFO )
 | |
|                   LWORK_CGELQF=DUM(1)
 | |
| *                 Compute space needed for CGEBRD
 | |
|                   CALL CGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
 | |
|      $                      DUM(1), DUM(1), -1, INFO )
 | |
|                   LWORK_CGEBRD=DUM(1)
 | |
| *                 Compute space needed for CUNMBR
 | |
|                   CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, 
 | |
|      $                DUM(1), B, LDB, DUM(1), -1, INFO )
 | |
|                   LWORK_CUNMBR=DUM(1)
 | |
| *                 Compute space needed for CUNGBR
 | |
|                   CALL CUNGBR( 'P', M, M, M, A, LDA, DUM(1),
 | |
|      $                   DUM(1), -1, INFO )
 | |
|                   LWORK_CUNGBR=DUM(1)
 | |
| *                 Compute space needed for CUNMLQ
 | |
|                   CALL CUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, DUM(1),
 | |
|      $                 B, LDB, DUM(1), -1, INFO )
 | |
|                   LWORK_CUNMLQ=DUM(1)
 | |
| *                 Compute total workspace needed 
 | |
|                   MAXWRK = M + LWORK_CGELQF
 | |
|                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_CGEBRD )
 | |
|                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_CUNMBR )
 | |
|                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_CUNGBR )
 | |
|                   IF( NRHS.GT.1 ) THEN
 | |
|                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
 | |
|                   ELSE
 | |
|                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
 | |
|                   END IF
 | |
|                   MAXWRK = MAX( MAXWRK, M + LWORK_CUNMLQ )
 | |
|                ELSE
 | |
| *
 | |
| *                 Path 2 - underdetermined
 | |
| *
 | |
| *                 Compute space needed for CGEBRD
 | |
|                   CALL CGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
 | |
|      $                      DUM(1), DUM(1), -1, INFO )
 | |
|                   LWORK_CGEBRD=DUM(1)
 | |
| *                 Compute space needed for CUNMBR
 | |
|                   CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, M, A, LDA, 
 | |
|      $                DUM(1), B, LDB, DUM(1), -1, INFO )
 | |
|                   LWORK_CUNMBR=DUM(1)
 | |
| *                 Compute space needed for CUNGBR
 | |
|                   CALL CUNGBR( 'P', M, N, M, A, LDA, DUM(1),
 | |
|      $                   DUM(1), -1, INFO )
 | |
|                   LWORK_CUNGBR=DUM(1)
 | |
|                   MAXWRK = 2*M + LWORK_CGEBRD
 | |
|                   MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR )
 | |
|                   MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR )
 | |
|                   MAXWRK = MAX( MAXWRK, N*NRHS )
 | |
|                END IF
 | |
|             END IF
 | |
|             MAXWRK = MAX( MINWRK, MAXWRK )
 | |
|          END IF
 | |
|          WORK( 1 ) = MAXWRK
 | |
| *
 | |
|          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
 | |
|      $      INFO = -12
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGELSS', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | |
|          RANK = 0
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine parameters
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SFMIN = SLAMCH( 'S' )
 | |
|       SMLNUM = SFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
 | |
|       IASCL = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 1
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 2
 | |
|       ELSE IF( ANRM.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Matrix all zero. Return zero solution.
 | |
| *
 | |
|          CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
 | |
|          CALL SLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
 | |
|          RANK = 0
 | |
|          GO TO 70
 | |
|       END IF
 | |
| *
 | |
| *     Scale B if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       BNRM = CLANGE( 'M', M, NRHS, B, LDB, RWORK )
 | |
|       IBSCL = 0
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
 | |
|          IBSCL = 1
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
 | |
|          IBSCL = 2
 | |
|       END IF
 | |
| *
 | |
| *     Overdetermined case
 | |
| *
 | |
|       IF( M.GE.N ) THEN
 | |
| *
 | |
| *        Path 1 - overdetermined or exactly determined
 | |
| *
 | |
|          MM = M
 | |
|          IF( M.GE.MNTHR ) THEN
 | |
| *
 | |
| *           Path 1a - overdetermined, with many more rows than columns
 | |
| *
 | |
|             MM = N
 | |
|             ITAU = 1
 | |
|             IWORK = ITAU + N
 | |
| *
 | |
| *           Compute A=Q*R
 | |
| *           (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *           (RWorkspace: none)
 | |
| *
 | |
|             CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
 | |
|      $                   LWORK-IWORK+1, INFO )
 | |
| *
 | |
| *           Multiply B by transpose(Q)
 | |
| *           (CWorkspace: need N+NRHS, prefer N+NRHS*NB)
 | |
| *           (RWorkspace: none)
 | |
| *
 | |
|             CALL CUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
 | |
|      $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | |
| *
 | |
| *           Zero out below R
 | |
| *
 | |
|             IF( N.GT.1 )
 | |
|      $         CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
 | |
|      $                      LDA )
 | |
|          END IF
 | |
| *
 | |
|          IE = 1
 | |
|          ITAUQ = 1
 | |
|          ITAUP = ITAUQ + N
 | |
|          IWORK = ITAUP + N
 | |
| *
 | |
| *        Bidiagonalize R in A
 | |
| *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
 | |
| *        (RWorkspace: need N)
 | |
| *
 | |
|          CALL CGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
 | |
|      $                INFO )
 | |
| *
 | |
| *        Multiply B by transpose of left bidiagonalizing vectors of R
 | |
| *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          CALL CUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
 | |
|      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | |
| *
 | |
| *        Generate right bidiagonalizing vectors of R in A
 | |
| *        (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
 | |
|      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
 | |
|          IRWORK = IE + N
 | |
| *
 | |
| *        Perform bidiagonal QR iteration
 | |
| *          multiply B by transpose of left singular vectors
 | |
| *          compute right singular vectors in A
 | |
| *        (CWorkspace: none)
 | |
| *        (RWorkspace: need BDSPAC)
 | |
| *
 | |
|          CALL CBDSQR( 'U', N, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
 | |
|      $                1, B, LDB, RWORK( IRWORK ), INFO )
 | |
|          IF( INFO.NE.0 )
 | |
|      $      GO TO 70
 | |
| *
 | |
| *        Multiply B by reciprocals of singular values
 | |
| *
 | |
|          THR = MAX( RCOND*S( 1 ), SFMIN )
 | |
|          IF( RCOND.LT.ZERO )
 | |
|      $      THR = MAX( EPS*S( 1 ), SFMIN )
 | |
|          RANK = 0
 | |
|          DO 10 I = 1, N
 | |
|             IF( S( I ).GT.THR ) THEN
 | |
|                CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
 | |
|                RANK = RANK + 1
 | |
|             ELSE
 | |
|                CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        Multiply B by right singular vectors
 | |
| *        (CWorkspace: need N, prefer N*NRHS)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
 | |
|             CALL CGEMM( 'C', 'N', N, NRHS, N, CONE, A, LDA, B, LDB,
 | |
|      $                  CZERO, WORK, LDB )
 | |
|             CALL CLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
 | |
|          ELSE IF( NRHS.GT.1 ) THEN
 | |
|             CHUNK = LWORK / N
 | |
|             DO 20 I = 1, NRHS, CHUNK
 | |
|                BL = MIN( NRHS-I+1, CHUNK )
 | |
|                CALL CGEMM( 'C', 'N', N, BL, N, CONE, A, LDA, B( 1, I ),
 | |
|      $                     LDB, CZERO, WORK, N )
 | |
|                CALL CLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
 | |
|    20       CONTINUE
 | |
|          ELSE
 | |
|             CALL CGEMV( 'C', N, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
 | |
|             CALL CCOPY( N, WORK, 1, B, 1 )
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.3*M+M*M+MAX( M, NRHS, N-2*M ) )
 | |
|      $          THEN
 | |
| *
 | |
| *        Underdetermined case, M much less than N
 | |
| *
 | |
| *        Path 2a - underdetermined, with many more columns than rows
 | |
| *        and sufficient workspace for an efficient algorithm
 | |
| *
 | |
|          LDWORK = M
 | |
|          IF( LWORK.GE.3*M+M*LDA+MAX( M, NRHS, N-2*M ) )
 | |
|      $      LDWORK = LDA
 | |
|          ITAU = 1
 | |
|          IWORK = M + 1
 | |
| *
 | |
| *        Compute A=L*Q
 | |
| *        (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
 | |
|      $                LWORK-IWORK+1, INFO )
 | |
|          IL = IWORK
 | |
| *
 | |
| *        Copy L to WORK(IL), zeroing out above it
 | |
| *
 | |
|          CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
 | |
|          CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
 | |
|      $                LDWORK )
 | |
|          IE = 1
 | |
|          ITAUQ = IL + LDWORK*M
 | |
|          ITAUP = ITAUQ + M
 | |
|          IWORK = ITAUP + M
 | |
| *
 | |
| *        Bidiagonalize L in WORK(IL)
 | |
| *        (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
 | |
| *        (RWorkspace: need M)
 | |
| *
 | |
|          CALL CGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
 | |
|      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                LWORK-IWORK+1, INFO )
 | |
| *
 | |
| *        Multiply B by transpose of left bidiagonalizing vectors of L
 | |
| *        (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
 | |
|      $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
 | |
|      $                LWORK-IWORK+1, INFO )
 | |
| *
 | |
| *        Generate right bidiagonalizing vectors of R in WORK(IL)
 | |
| *        (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          CALL CUNGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
 | |
|      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
 | |
|          IRWORK = IE + M
 | |
| *
 | |
| *        Perform bidiagonal QR iteration, computing right singular
 | |
| *        vectors of L in WORK(IL) and multiplying B by transpose of
 | |
| *        left singular vectors
 | |
| *        (CWorkspace: need M*M)
 | |
| *        (RWorkspace: need BDSPAC)
 | |
| *
 | |
|          CALL CBDSQR( 'U', M, M, 0, NRHS, S, RWORK( IE ), WORK( IL ),
 | |
|      $                LDWORK, A, LDA, B, LDB, RWORK( IRWORK ), INFO )
 | |
|          IF( INFO.NE.0 )
 | |
|      $      GO TO 70
 | |
| *
 | |
| *        Multiply B by reciprocals of singular values
 | |
| *
 | |
|          THR = MAX( RCOND*S( 1 ), SFMIN )
 | |
|          IF( RCOND.LT.ZERO )
 | |
|      $      THR = MAX( EPS*S( 1 ), SFMIN )
 | |
|          RANK = 0
 | |
|          DO 30 I = 1, M
 | |
|             IF( S( I ).GT.THR ) THEN
 | |
|                CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
 | |
|                RANK = RANK + 1
 | |
|             ELSE
 | |
|                CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
 | |
|             END IF
 | |
|    30    CONTINUE
 | |
|          IWORK = IL + M*LDWORK
 | |
| *
 | |
| *        Multiply B by right singular vectors of L in WORK(IL)
 | |
| *        (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
 | |
|             CALL CGEMM( 'C', 'N', M, NRHS, M, CONE, WORK( IL ), LDWORK,
 | |
|      $                  B, LDB, CZERO, WORK( IWORK ), LDB )
 | |
|             CALL CLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
 | |
|          ELSE IF( NRHS.GT.1 ) THEN
 | |
|             CHUNK = ( LWORK-IWORK+1 ) / M
 | |
|             DO 40 I = 1, NRHS, CHUNK
 | |
|                BL = MIN( NRHS-I+1, CHUNK )
 | |
|                CALL CGEMM( 'C', 'N', M, BL, M, CONE, WORK( IL ), LDWORK,
 | |
|      $                     B( 1, I ), LDB, CZERO, WORK( IWORK ), M )
 | |
|                CALL CLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
 | |
|      $                      LDB )
 | |
|    40       CONTINUE
 | |
|          ELSE
 | |
|             CALL CGEMV( 'C', M, M, CONE, WORK( IL ), LDWORK, B( 1, 1 ),
 | |
|      $                  1, CZERO, WORK( IWORK ), 1 )
 | |
|             CALL CCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
 | |
|          END IF
 | |
| *
 | |
| *        Zero out below first M rows of B
 | |
| *
 | |
|          CALL CLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
 | |
|          IWORK = ITAU + M
 | |
| *
 | |
| *        Multiply transpose(Q) by B
 | |
| *        (CWorkspace: need M+NRHS, prefer M+NHRS*NB)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          CALL CUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
 | |
|      $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Path 2 - remaining underdetermined cases
 | |
| *
 | |
|          IE = 1
 | |
|          ITAUQ = 1
 | |
|          ITAUP = ITAUQ + M
 | |
|          IWORK = ITAUP + M
 | |
| *
 | |
| *        Bidiagonalize A
 | |
| *        (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB)
 | |
| *        (RWorkspace: need N)
 | |
| *
 | |
|          CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
 | |
|      $                INFO )
 | |
| *
 | |
| *        Multiply B by transpose of left bidiagonalizing vectors
 | |
| *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
 | |
|      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
 | |
| *
 | |
| *        Generate right bidiagonalizing vectors in A
 | |
| *        (CWorkspace: need 3*M, prefer 2*M+M*NB)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
 | |
|      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
 | |
|          IRWORK = IE + M
 | |
| *
 | |
| *        Perform bidiagonal QR iteration,
 | |
| *           computing right singular vectors of A in A and
 | |
| *           multiplying B by transpose of left singular vectors
 | |
| *        (CWorkspace: none)
 | |
| *        (RWorkspace: need BDSPAC)
 | |
| *
 | |
|          CALL CBDSQR( 'L', M, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
 | |
|      $                1, B, LDB, RWORK( IRWORK ), INFO )
 | |
|          IF( INFO.NE.0 )
 | |
|      $      GO TO 70
 | |
| *
 | |
| *        Multiply B by reciprocals of singular values
 | |
| *
 | |
|          THR = MAX( RCOND*S( 1 ), SFMIN )
 | |
|          IF( RCOND.LT.ZERO )
 | |
|      $      THR = MAX( EPS*S( 1 ), SFMIN )
 | |
|          RANK = 0
 | |
|          DO 50 I = 1, M
 | |
|             IF( S( I ).GT.THR ) THEN
 | |
|                CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
 | |
|                RANK = RANK + 1
 | |
|             ELSE
 | |
|                CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
 | |
|             END IF
 | |
|    50    CONTINUE
 | |
| *
 | |
| *        Multiply B by right singular vectors of A
 | |
| *        (CWorkspace: need N, prefer N*NRHS)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
 | |
|             CALL CGEMM( 'C', 'N', N, NRHS, M, CONE, A, LDA, B, LDB,
 | |
|      $                  CZERO, WORK, LDB )
 | |
|             CALL CLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
 | |
|          ELSE IF( NRHS.GT.1 ) THEN
 | |
|             CHUNK = LWORK / N
 | |
|             DO 60 I = 1, NRHS, CHUNK
 | |
|                BL = MIN( NRHS-I+1, CHUNK )
 | |
|                CALL CGEMM( 'C', 'N', N, BL, M, CONE, A, LDA, B( 1, I ),
 | |
|      $                     LDB, CZERO, WORK, N )
 | |
|                CALL CLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
|             CALL CGEMV( 'C', M, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
 | |
|             CALL CCOPY( N, WORK, 1, B, 1 )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling
 | |
| *
 | |
|       IF( IASCL.EQ.1 ) THEN
 | |
|          CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
 | |
|          CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
 | |
|      $                INFO )
 | |
|       ELSE IF( IASCL.EQ.2 ) THEN
 | |
|          CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
 | |
|          CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
 | |
|      $                INFO )
 | |
|       END IF
 | |
|       IF( IBSCL.EQ.1 ) THEN
 | |
|          CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
 | |
|       ELSE IF( IBSCL.EQ.2 ) THEN
 | |
|          CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
 | |
|       END IF
 | |
|    70 CONTINUE
 | |
|       WORK( 1 ) = MAXWRK
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGELSS
 | |
| *
 | |
|       END
 |