265 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLAGHE
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZLAGHE( N, K, D, A, LDA, ISEED, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, K, LDA, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISEED( 4 )
 | |
| *       DOUBLE PRECISION   D( * )
 | |
| *       COMPLEX*16         A( LDA, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLAGHE generates a complex hermitian matrix A, by pre- and post-
 | |
| *> multiplying a real diagonal matrix D with a random unitary matrix:
 | |
| *> A = U*D*U'. The semi-bandwidth may then be reduced to k by additional
 | |
| *> unitary transformations.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of nonzero subdiagonals within the band of A.
 | |
| *>          0 <= K <= N-1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The diagonal elements of the diagonal matrix D.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The generated n by n hermitian matrix A (the full matrix is
 | |
| *>          stored).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry, the seed of the random number generator; the array
 | |
| *>          elements must be between 0 and 4095, and ISEED(4) must be
 | |
| *>          odd.
 | |
| *>          On exit, the seed is updated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16_matgen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZLAGHE( N, K, D, A, LDA, ISEED, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, K, LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISEED( 4 )
 | |
|       DOUBLE PRECISION   D( * )
 | |
|       COMPLEX*16         A( LDA, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ZERO, ONE, HALF
 | |
|       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
 | |
|      $                   ONE = ( 1.0D+0, 0.0D+0 ),
 | |
|      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       DOUBLE PRECISION   WN
 | |
|       COMPLEX*16         ALPHA, TAU, WA, WB
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZAXPY, ZGEMV, ZGERC, ZHEMV, ZHER2,
 | |
|      $                   ZLARNV, ZSCAL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DZNRM2
 | |
|       COMPLEX*16         ZDOTC
 | |
|       EXTERNAL           DZNRM2, ZDOTC
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DCONJG, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( K.LT.0 .OR. K.GT.N-1 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       END IF
 | |
|       IF( INFO.LT.0 ) THEN
 | |
|          CALL XERBLA( 'ZLAGHE', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     initialize lower triangle of A to diagonal matrix
 | |
| *
 | |
|       DO 20 J = 1, N
 | |
|          DO 10 I = J + 1, N
 | |
|             A( I, J ) = ZERO
 | |
|    10    CONTINUE
 | |
|    20 CONTINUE
 | |
|       DO 30 I = 1, N
 | |
|          A( I, I ) = D( I )
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Generate lower triangle of hermitian matrix
 | |
| *
 | |
|       DO 40 I = N - 1, 1, -1
 | |
| *
 | |
| *        generate random reflection
 | |
| *
 | |
|          CALL ZLARNV( 3, ISEED, N-I+1, WORK )
 | |
|          WN = DZNRM2( N-I+1, WORK, 1 )
 | |
|          WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
 | |
|          IF( WN.EQ.ZERO ) THEN
 | |
|             TAU = ZERO
 | |
|          ELSE
 | |
|             WB = WORK( 1 ) + WA
 | |
|             CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
 | |
|             WORK( 1 ) = ONE
 | |
|             TAU = DBLE( WB / WA )
 | |
|          END IF
 | |
| *
 | |
| *        apply random reflection to A(i:n,i:n) from the left
 | |
| *        and the right
 | |
| *
 | |
| *        compute  y := tau * A * u
 | |
| *
 | |
|          CALL ZHEMV( 'Lower', N-I+1, TAU, A( I, I ), LDA, WORK, 1, ZERO,
 | |
|      $               WORK( N+1 ), 1 )
 | |
| *
 | |
| *        compute  v := y - 1/2 * tau * ( y, u ) * u
 | |
| *
 | |
|          ALPHA = -HALF*TAU*ZDOTC( N-I+1, WORK( N+1 ), 1, WORK, 1 )
 | |
|          CALL ZAXPY( N-I+1, ALPHA, WORK, 1, WORK( N+1 ), 1 )
 | |
| *
 | |
| *        apply the transformation as a rank-2 update to A(i:n,i:n)
 | |
| *
 | |
|          CALL ZHER2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1,
 | |
|      $               A( I, I ), LDA )
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Reduce number of subdiagonals to K
 | |
| *
 | |
|       DO 60 I = 1, N - 1 - K
 | |
| *
 | |
| *        generate reflection to annihilate A(k+i+1:n,i)
 | |
| *
 | |
|          WN = DZNRM2( N-K-I+1, A( K+I, I ), 1 )
 | |
|          WA = ( WN / ABS( A( K+I, I ) ) )*A( K+I, I )
 | |
|          IF( WN.EQ.ZERO ) THEN
 | |
|             TAU = ZERO
 | |
|          ELSE
 | |
|             WB = A( K+I, I ) + WA
 | |
|             CALL ZSCAL( N-K-I, ONE / WB, A( K+I+1, I ), 1 )
 | |
|             A( K+I, I ) = ONE
 | |
|             TAU = DBLE( WB / WA )
 | |
|          END IF
 | |
| *
 | |
| *        apply reflection to A(k+i:n,i+1:k+i-1) from the left
 | |
| *
 | |
|          CALL ZGEMV( 'Conjugate transpose', N-K-I+1, K-1, ONE,
 | |
|      $               A( K+I, I+1 ), LDA, A( K+I, I ), 1, ZERO, WORK, 1 )
 | |
|          CALL ZGERC( N-K-I+1, K-1, -TAU, A( K+I, I ), 1, WORK, 1,
 | |
|      $               A( K+I, I+1 ), LDA )
 | |
| *
 | |
| *        apply reflection to A(k+i:n,k+i:n) from the left and the right
 | |
| *
 | |
| *        compute  y := tau * A * u
 | |
| *
 | |
|          CALL ZHEMV( 'Lower', N-K-I+1, TAU, A( K+I, K+I ), LDA,
 | |
|      $               A( K+I, I ), 1, ZERO, WORK, 1 )
 | |
| *
 | |
| *        compute  v := y - 1/2 * tau * ( y, u ) * u
 | |
| *
 | |
|          ALPHA = -HALF*TAU*ZDOTC( N-K-I+1, WORK, 1, A( K+I, I ), 1 )
 | |
|          CALL ZAXPY( N-K-I+1, ALPHA, A( K+I, I ), 1, WORK, 1 )
 | |
| *
 | |
| *        apply hermitian rank-2 update to A(k+i:n,k+i:n)
 | |
| *
 | |
|          CALL ZHER2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1,
 | |
|      $               A( K+I, K+I ), LDA )
 | |
| *
 | |
|          A( K+I, I ) = -WA
 | |
|          DO 50 J = K + I + 1, N
 | |
|             A( J, I ) = ZERO
 | |
|    50    CONTINUE
 | |
|    60 CONTINUE
 | |
| *
 | |
| *     Store full hermitian matrix
 | |
| *
 | |
|       DO 80 J = 1, N
 | |
|          DO 70 I = J + 1, N
 | |
|             A( J, I ) = DCONJG( A( I, J ) )
 | |
|    70    CONTINUE
 | |
|    80 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLAGHE
 | |
| *
 | |
|       END
 |