333 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE CGEMVF ( TRANS, M, N, ALPHA, A, LDA, X, INCX,
 | 
						|
     $                   BETA, Y, INCY )
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      COMPLEX            ALPHA, BETA
 | 
						|
      INTEGER            INCX, INCY, LDA, M, N
 | 
						|
      CHARACTER*1        TRANS
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), X( * ), Y( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  CGEMV  performs one of the matrix-vector operations
 | 
						|
*
 | 
						|
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   or
 | 
						|
*
 | 
						|
*     y := alpha*conjg( A' )*x + beta*y,
 | 
						|
*
 | 
						|
*  where alpha and beta are scalars, x and y are vectors and A is an
 | 
						|
*  m by n matrix.
 | 
						|
*
 | 
						|
*  Parameters
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*  TRANS  - CHARACTER*1.
 | 
						|
*           On entry, TRANS specifies the operation to be performed as
 | 
						|
*           follows:
 | 
						|
*
 | 
						|
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
 | 
						|
*
 | 
						|
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
 | 
						|
*
 | 
						|
*              TRANS = 'C' or 'c'   y := alpha*conjg( A' )*x + beta*y.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  M      - INTEGER.
 | 
						|
*           On entry, M specifies the number of rows of the matrix A.
 | 
						|
*           M must be at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  N      - INTEGER.
 | 
						|
*           On entry, N specifies the number of columns of the matrix A.
 | 
						|
*           N must be at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  ALPHA  - COMPLEX         .
 | 
						|
*           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
 | 
						|
*           Before entry, the leading m by n part of the array A must
 | 
						|
*           contain the matrix of coefficients.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  LDA    - INTEGER.
 | 
						|
*           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*           in the calling (sub) program. LDA must be at least
 | 
						|
*           max( 1, m ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  X      - COMPLEX          array of DIMENSION at least
 | 
						|
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
 | 
						|
*           and at least
 | 
						|
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
 | 
						|
*           Before entry, the incremented array X must contain the
 | 
						|
*           vector x.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  INCX   - INTEGER.
 | 
						|
*           On entry, INCX specifies the increment for the elements of
 | 
						|
*           X. INCX must not be zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  BETA   - COMPLEX         .
 | 
						|
*           On entry, BETA specifies the scalar beta. When BETA is
 | 
						|
*           supplied as zero then Y need not be set on input.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  Y      - COMPLEX          array of DIMENSION at least
 | 
						|
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
 | 
						|
*           and at least
 | 
						|
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
 | 
						|
*           Before entry with BETA non-zero, the incremented array Y
 | 
						|
*           must contain the vector y. On exit, Y is overwritten by the
 | 
						|
*           updated vector y.
 | 
						|
*
 | 
						|
*  INCY   - INTEGER.
 | 
						|
*           On entry, INCY specifies the increment for the elements of
 | 
						|
*           Y. INCY must not be zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*
 | 
						|
*  Level 2 Blas routine.
 | 
						|
*
 | 
						|
*  -- Written on 22-October-1986.
 | 
						|
*     Jack Dongarra, Argonne National Lab.
 | 
						|
*     Jeremy Du Croz, Nag Central Office.
 | 
						|
*     Sven Hammarling, Nag Central Office.
 | 
						|
*     Richard Hanson, Sandia National Labs.
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ONE
 | 
						|
      PARAMETER        ( ONE  = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
      COMPLEX            ZERO
 | 
						|
      PARAMETER        ( ZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX            TEMP
 | 
						|
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
 | 
						|
      LOGICAL            NOCONJ, NOTRANS, XCONJ
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CONJG, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF     ( .NOT.LSAME( TRANS, 'N' ).AND.
 | 
						|
     $         .NOT.LSAME( TRANS, 'T' ).AND.
 | 
						|
     $         .NOT.LSAME( TRANS, 'R' ).AND.
 | 
						|
     $         .NOT.LSAME( TRANS, 'C' ).AND.
 | 
						|
     $         .NOT.LSAME( TRANS, 'O' ).AND.
 | 
						|
     $         .NOT.LSAME( TRANS, 'U' ).AND.
 | 
						|
     $         .NOT.LSAME( TRANS, 'S' ).AND.
 | 
						|
     $         .NOT.LSAME( TRANS, 'D' )      )THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( M.LT.0 )THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( N.LT.0 )THEN
 | 
						|
         INFO = 3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) )THEN
 | 
						|
         INFO = 6
 | 
						|
      ELSE IF( INCX.EQ.0 )THEN
 | 
						|
         INFO = 8
 | 
						|
      ELSE IF( INCY.EQ.0 )THEN
 | 
						|
         INFO = 11
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 )THEN
 | 
						|
         CALL XERBLA( 'CGEMV ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
 | 
						|
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      NOCONJ = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
 | 
						|
     $     .OR. LSAME( TRANS, 'O' ) .OR. LSAME( TRANS, 'U' ))
 | 
						|
 | 
						|
      NOTRANS = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'R' )
 | 
						|
     $     .OR. LSAME( TRANS, 'O' ) .OR. LSAME( TRANS, 'S' ))
 | 
						|
 | 
						|
      XCONJ  = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
 | 
						|
     $     .OR. LSAME( TRANS, 'R' ) .OR. LSAME( TRANS, 'C' ))
 | 
						|
*
 | 
						|
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
 | 
						|
*     up the start points in  X  and  Y.
 | 
						|
*
 | 
						|
      IF(NOTRANS)THEN
 | 
						|
         LENX = N
 | 
						|
         LENY = M
 | 
						|
      ELSE
 | 
						|
         LENX = M
 | 
						|
         LENY = N
 | 
						|
      END IF
 | 
						|
      IF( INCX.GT.0 )THEN
 | 
						|
         KX = 1
 | 
						|
      ELSE
 | 
						|
         KX = 1 - ( LENX - 1 )*INCX
 | 
						|
      END IF
 | 
						|
      IF( INCY.GT.0 )THEN
 | 
						|
         KY = 1
 | 
						|
      ELSE
 | 
						|
         KY = 1 - ( LENY - 1 )*INCY
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of A are
 | 
						|
*     accessed sequentially with one pass through A.
 | 
						|
*
 | 
						|
*     First form  y := beta*y.
 | 
						|
*
 | 
						|
      IF( BETA.NE.ONE )THEN
 | 
						|
         IF( INCY.EQ.1 )THEN
 | 
						|
            IF( BETA.EQ.ZERO )THEN
 | 
						|
               DO 10, I = 1, LENY
 | 
						|
                  Y( I ) = ZERO
 | 
						|
   10          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 20, I = 1, LENY
 | 
						|
                  Y( I ) = BETA*Y( I )
 | 
						|
   20          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IY = KY
 | 
						|
            IF( BETA.EQ.ZERO )THEN
 | 
						|
               DO 30, I = 1, LENY
 | 
						|
                  Y( IY ) = ZERO
 | 
						|
                  IY      = IY   + INCY
 | 
						|
   30          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 40, I = 1, LENY
 | 
						|
                  Y( IY ) = BETA*Y( IY )
 | 
						|
                  IY      = IY           + INCY
 | 
						|
   40          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( ALPHA.EQ.ZERO )
 | 
						|
     $   RETURN
 | 
						|
 | 
						|
      IF(NOTRANS)THEN
 | 
						|
*
 | 
						|
*        Form  y := alpha*A*x + y.
 | 
						|
*
 | 
						|
         JX = KX
 | 
						|
         IF( INCY.EQ.1 )THEN
 | 
						|
            DO 60, J = 1, N
 | 
						|
               IF( X( JX ).NE.ZERO )THEN
 | 
						|
                  IF (XCONJ) THEN
 | 
						|
                     TEMP = ALPHA*X( JX )
 | 
						|
                  ELSE
 | 
						|
                     TEMP = ALPHA*CONJG(X( JX ))
 | 
						|
                  ENDIF
 | 
						|
                  IF (NOCONJ) THEN
 | 
						|
                     DO 50, I = 1, M
 | 
						|
                        Y( I ) = Y( I ) + TEMP*A( I, J )
 | 
						|
 50                  CONTINUE
 | 
						|
                  ELSE
 | 
						|
                     DO 55, I = 1, M
 | 
						|
                        Y( I ) = Y( I ) + TEMP*CONJG(A( I, J ))
 | 
						|
 55                  CONTINUE
 | 
						|
                  ENDIF
 | 
						|
               END IF
 | 
						|
               JX = JX + INCX
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 80, J = 1, N
 | 
						|
               IF( X( JX ).NE.ZERO )THEN
 | 
						|
                  IF (XCONJ) THEN
 | 
						|
                     TEMP = ALPHA*X( JX )
 | 
						|
                  ELSE
 | 
						|
                     TEMP = ALPHA*CONJG(X( JX ))
 | 
						|
                  ENDIF
 | 
						|
                  IY   = KY
 | 
						|
                  IF (NOCONJ) THEN
 | 
						|
                     DO 70, I = 1, M
 | 
						|
                        Y( IY ) = Y( IY ) + TEMP*A( I, J )
 | 
						|
                        IY      = IY      + INCY
 | 
						|
 70                  CONTINUE
 | 
						|
                  ELSE
 | 
						|
                     DO 75, I = 1, M
 | 
						|
                        Y( IY ) = Y( IY ) + TEMP* CONJG(A( I, J ))
 | 
						|
                        IY      = IY      + INCY
 | 
						|
 75                  CONTINUE
 | 
						|
                  ENDIF
 | 
						|
               END IF
 | 
						|
               JX = JX + INCX
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y.
 | 
						|
*
 | 
						|
         JY = KY
 | 
						|
         IF( INCX.EQ.1 )THEN
 | 
						|
            DO 110, J = 1, N
 | 
						|
               TEMP = ZERO
 | 
						|
               IF( NOCONJ )THEN
 | 
						|
                  DO 90, I = 1, M
 | 
						|
                     IF (XCONJ) THEN
 | 
						|
                        TEMP = TEMP + A( I, J )*X( I )
 | 
						|
                     ELSE
 | 
						|
                        TEMP = TEMP + A( I, J )*CONJG(X( I ))
 | 
						|
                     ENDIF
 | 
						|
   90             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  DO 100, I = 1, M
 | 
						|
                     IF (XCONJ) THEN
 | 
						|
                        TEMP = TEMP + CONJG( A( I, J ) )*X( I )
 | 
						|
                     ELSE
 | 
						|
                        TEMP = TEMP + CONJG( A( I, J ) )*CONJG(X( I ))
 | 
						|
                     ENDIF
 | 
						|
  100             CONTINUE
 | 
						|
               END IF
 | 
						|
               Y( JY ) = Y( JY ) + ALPHA*TEMP
 | 
						|
               JY      = JY      + INCY
 | 
						|
  110       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 140, J = 1, N
 | 
						|
               TEMP = ZERO
 | 
						|
               IX   = KX
 | 
						|
               IF( NOCONJ )THEN
 | 
						|
                  DO 120, I = 1, M
 | 
						|
                     IF (XCONJ) THEN
 | 
						|
                        TEMP = TEMP + A( I, J )*X( IX )
 | 
						|
                     ELSE
 | 
						|
                        TEMP = TEMP + A( I, J )*CONJG(X( IX ))
 | 
						|
                     ENDIF
 | 
						|
                     IX   = IX   + INCX
 | 
						|
  120             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  DO 130, I = 1, M
 | 
						|
                     IF (XCONJ) THEN
 | 
						|
                        TEMP = TEMP + CONJG( A( I, J ) )*X( IX )
 | 
						|
                     ELSE
 | 
						|
                       TEMP = TEMP + CONJG( A( I, J ) )*CONJG(X( IX ))
 | 
						|
                     ENDIF
 | 
						|
                     IX   = IX   + INCX
 | 
						|
  130             CONTINUE
 | 
						|
               END IF
 | 
						|
               Y( JY ) = Y( JY ) + ALPHA*TEMP
 | 
						|
               JY      = JY      + INCY
 | 
						|
  140       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGEMV .
 | 
						|
*
 | 
						|
      END
 | 
						|
 |