558 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			558 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> ZHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZHEEVX + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 | |
| *                          ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
 | |
| *                          IWORK, IFAIL, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, RANGE, UPLO
 | |
| *       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
 | |
| *       DOUBLE PRECISION   ABSTOL, VL, VU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IFAIL( * ), IWORK( * )
 | |
| *       DOUBLE PRECISION   RWORK( * ), W( * )
 | |
| *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
 | |
| *> of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
 | |
| *> be selected by specifying either a range of values or a range of
 | |
| *> indices for the desired eigenvalues.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RANGE
 | |
| *> \verbatim
 | |
| *>          RANGE is CHARACTER*1
 | |
| *>          = 'A': all eigenvalues will be found.
 | |
| *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | |
| *>                 will be found.
 | |
| *>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA, N)
 | |
| *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
 | |
| *>          leading N-by-N upper triangular part of A contains the
 | |
| *>          upper triangular part of the matrix A.  If UPLO = 'L',
 | |
| *>          the leading N-by-N lower triangular part of A contains
 | |
| *>          the lower triangular part of the matrix A.
 | |
| *>          On exit, the lower triangle (if UPLO='L') or the upper
 | |
| *>          triangle (if UPLO='U') of A, including the diagonal, is
 | |
| *>          destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VU
 | |
| *> \verbatim
 | |
| *>          VU is DOUBLE PRECISION
 | |
| *>          If RANGE='V', the lower and upper bounds of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IL
 | |
| *> \verbatim
 | |
| *>          IL is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IU
 | |
| *> \verbatim
 | |
| *>          IU is INTEGER
 | |
| *>          If RANGE='I', the indices (in ascending order) of the
 | |
| *>          smallest and largest eigenvalues to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ABSTOL
 | |
| *> \verbatim
 | |
| *>          ABSTOL is DOUBLE PRECISION
 | |
| *>          The absolute error tolerance for the eigenvalues.
 | |
| *>          An approximate eigenvalue is accepted as converged
 | |
| *>          when it is determined to lie in an interval [a,b]
 | |
| *>          of width less than or equal to
 | |
| *>
 | |
| *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
 | |
| *>
 | |
| *>          where EPS is the machine precision.  If ABSTOL is less than
 | |
| *>          or equal to zero, then  EPS*|T|  will be used in its place,
 | |
| *>          where |T| is the 1-norm of the tridiagonal matrix obtained
 | |
| *>          by reducing A to tridiagonal form.
 | |
| *>
 | |
| *>          Eigenvalues will be computed most accurately when ABSTOL is
 | |
| *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
 | |
| *>          If this routine returns with INFO>0, indicating that some
 | |
| *>          eigenvectors did not converge, try setting ABSTOL to
 | |
| *>          2*DLAMCH('S').
 | |
| *>
 | |
| *>          See "Computing Small Singular Values of Bidiagonal Matrices
 | |
| *>          with Guaranteed High Relative Accuracy," by Demmel and
 | |
| *>          Kahan, LAPACK Working Note #3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The total number of eigenvalues found.  0 <= M <= N.
 | |
| *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On normal exit, the first M elements contain the selected
 | |
| *>          eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
 | |
| *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
 | |
| *>          contain the orthonormal eigenvectors of the matrix A
 | |
| *>          corresponding to the selected eigenvalues, with the i-th
 | |
| *>          column of Z holding the eigenvector associated with W(i).
 | |
| *>          If an eigenvector fails to converge, then that column of Z
 | |
| *>          contains the latest approximation to the eigenvector, and the
 | |
| *>          index of the eigenvector is returned in IFAIL.
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *>          Note: the user must ensure that at least max(1,M) columns are
 | |
| *>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | |
| *>          is not known in advance and an upper bound must be used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  LWORK >= 1, when N <= 1;
 | |
| *>          otherwise 2*N.
 | |
| *>          For optimal efficiency, LWORK >= (NB+1)*N,
 | |
| *>          where NB is the max of the blocksize for ZHETRD and for
 | |
| *>          ZUNMTR as returned by ILAENV.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (5*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IFAIL
 | |
| *> \verbatim
 | |
| *>          IFAIL is INTEGER array, dimension (N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
 | |
| *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
 | |
| *>          indices of the eigenvectors that failed to converge.
 | |
| *>          If JOBZ = 'N', then IFAIL is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
 | |
| *>                Their indices are stored in array IFAIL.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16HEeigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 | |
|      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
 | |
|      $                   IWORK, IFAIL, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, RANGE, UPLO
 | |
|       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
 | |
|       DOUBLE PRECISION   ABSTOL, VL, VU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IFAIL( * ), IWORK( * )
 | |
|       DOUBLE PRECISION   RWORK( * ), W( * )
 | |
|       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       COMPLEX*16         CONE
 | |
|       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
 | |
|      $                   WANTZ
 | |
|       CHARACTER          ORDER
 | |
|       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
 | |
|      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
 | |
|      $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
 | |
|      $                   NSPLIT
 | |
|       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
 | |
|      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANHE
 | |
|       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
 | |
|      $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
 | |
|      $                   ZUNMTR
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       LOWER = LSAME( UPLO, 'L' )
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       ALLEIG = LSAME( RANGE, 'A' )
 | |
|       VALEIG = LSAME( RANGE, 'V' )
 | |
|       INDEIG = LSAME( RANGE, 'I' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE
 | |
|          IF( VALEIG ) THEN
 | |
|             IF( N.GT.0 .AND. VU.LE.VL )
 | |
|      $         INFO = -8
 | |
|          ELSE IF( INDEIG ) THEN
 | |
|             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
 | |
|                INFO = -9
 | |
|             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | |
|                INFO = -10
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|             INFO = -15
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( N.LE.1 ) THEN
 | |
|             LWKMIN = 1
 | |
|             WORK( 1 ) = LWKMIN
 | |
|          ELSE
 | |
|             LWKMIN = 2*N
 | |
|             NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
 | |
|             NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
 | |
|             LWKOPT = MAX( 1, ( NB + 1 )*N )
 | |
|             WORK( 1 ) = LWKOPT
 | |
|          END IF
 | |
| *
 | |
|          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
 | |
|      $      INFO = -17
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZHEEVX', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       M = 0
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( ALLEIG .OR. INDEIG ) THEN
 | |
|             M = 1
 | |
|             W( 1 ) = A( 1, 1 )
 | |
|          ELSE IF( VALEIG ) THEN
 | |
|             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
 | |
|      $           THEN
 | |
|                M = 1
 | |
|                W( 1 ) = A( 1, 1 )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( WANTZ )
 | |
|      $      Z( 1, 1 ) = CONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'Safe minimum' )
 | |
|       EPS = DLAMCH( 'Precision' )
 | |
|       SMLNUM = SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RMIN = SQRT( SMLNUM )
 | |
|       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
 | |
| *
 | |
| *     Scale matrix to allowable range, if necessary.
 | |
| *
 | |
|       ISCALE = 0
 | |
|       ABSTLL = ABSTOL
 | |
|       IF( VALEIG ) THEN
 | |
|          VLL = VL
 | |
|          VUU = VU
 | |
|       END IF
 | |
|       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMIN / ANRM
 | |
|       ELSE IF( ANRM.GT.RMAX ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMAX / ANRM
 | |
|       END IF
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          IF( LOWER ) THEN
 | |
|             DO 10 J = 1, N
 | |
|                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
|             DO 20 J = 1, N
 | |
|                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|          IF( ABSTOL.GT.0 )
 | |
|      $      ABSTLL = ABSTOL*SIGMA
 | |
|          IF( VALEIG ) THEN
 | |
|             VLL = VL*SIGMA
 | |
|             VUU = VU*SIGMA
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
 | |
| *
 | |
|       INDD = 1
 | |
|       INDE = INDD + N
 | |
|       INDRWK = INDE + N
 | |
|       INDTAU = 1
 | |
|       INDWRK = INDTAU + N
 | |
|       LLWORK = LWORK - INDWRK + 1
 | |
|       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
 | |
|      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
 | |
| *
 | |
| *     If all eigenvalues are desired and ABSTOL is less than or equal to
 | |
| *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
 | |
| *     some eigenvalue, then try DSTEBZ.
 | |
| *
 | |
|       TEST = .FALSE.
 | |
|       IF( INDEIG ) THEN
 | |
|          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
 | |
|             TEST = .TRUE.
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
 | |
|          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
 | |
|          INDEE = INDRWK + 2*N
 | |
|          IF( .NOT.WANTZ ) THEN
 | |
|             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
 | |
|             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
 | |
|          ELSE
 | |
|             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
 | |
|             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
 | |
|      $                   WORK( INDWRK ), LLWORK, IINFO )
 | |
|             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
 | |
|             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
 | |
|      $                   RWORK( INDRWK ), INFO )
 | |
|             IF( INFO.EQ.0 ) THEN
 | |
|                DO 30 I = 1, N
 | |
|                   IFAIL( I ) = 0
 | |
|    30          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( INFO.EQ.0 ) THEN
 | |
|             M = N
 | |
|             GO TO 40
 | |
|          END IF
 | |
|          INFO = 0
 | |
|       END IF
 | |
| *
 | |
| *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          ORDER = 'B'
 | |
|       ELSE
 | |
|          ORDER = 'E'
 | |
|       END IF
 | |
|       INDIBL = 1
 | |
|       INDISP = INDIBL + N
 | |
|       INDIWK = INDISP + N
 | |
|       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
 | |
|      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
 | |
|      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
 | |
|      $             IWORK( INDIWK ), INFO )
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
 | |
|      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
 | |
|      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
 | |
| *
 | |
| *        Apply unitary matrix used in reduction to tridiagonal
 | |
| *        form to eigenvectors returned by ZSTEIN.
 | |
| *
 | |
|          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
 | |
|      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
 | |
|       END IF
 | |
| *
 | |
| *     If matrix was scaled, then rescale eigenvalues appropriately.
 | |
| *
 | |
|    40 CONTINUE
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          IF( INFO.EQ.0 ) THEN
 | |
|             IMAX = M
 | |
|          ELSE
 | |
|             IMAX = INFO - 1
 | |
|          END IF
 | |
|          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
 | |
|       END IF
 | |
| *
 | |
| *     If eigenvalues are not in order, then sort them, along with
 | |
| *     eigenvectors.
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          DO 60 J = 1, M - 1
 | |
|             I = 0
 | |
|             TMP1 = W( J )
 | |
|             DO 50 JJ = J + 1, M
 | |
|                IF( W( JJ ).LT.TMP1 ) THEN
 | |
|                   I = JJ
 | |
|                   TMP1 = W( JJ )
 | |
|                END IF
 | |
|    50       CONTINUE
 | |
| *
 | |
|             IF( I.NE.0 ) THEN
 | |
|                ITMP1 = IWORK( INDIBL+I-1 )
 | |
|                W( I ) = W( J )
 | |
|                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
 | |
|                W( J ) = TMP1
 | |
|                IWORK( INDIBL+J-1 ) = ITMP1
 | |
|                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   ITMP1 = IFAIL( I )
 | |
|                   IFAIL( I ) = IFAIL( J )
 | |
|                   IFAIL( J ) = ITMP1
 | |
|                END IF
 | |
|             END IF
 | |
|    60    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Set WORK(1) to optimal complex workspace size.
 | |
| *
 | |
|       WORK( 1 ) = LWKOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZHEEVX
 | |
| *
 | |
|       END
 |