308 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			308 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGGBAK
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZGGBAK + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggbak.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggbak.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggbak.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
 | |
| *                          LDV, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOB, SIDE
 | |
| *       INTEGER            IHI, ILO, INFO, LDV, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   LSCALE( * ), RSCALE( * )
 | |
| *       COMPLEX*16         V( LDV, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGGBAK forms the right or left eigenvectors of a complex generalized
 | |
| *> eigenvalue problem A*x = lambda*B*x, by backward transformation on
 | |
| *> the computed eigenvectors of the balanced pair of matrices output by
 | |
| *> ZGGBAL.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOB
 | |
| *> \verbatim
 | |
| *>          JOB is CHARACTER*1
 | |
| *>          Specifies the type of backward transformation required:
 | |
| *>          = 'N':  do nothing, return immediately;
 | |
| *>          = 'P':  do backward transformation for permutation only;
 | |
| *>          = 'S':  do backward transformation for scaling only;
 | |
| *>          = 'B':  do backward transformations for both permutation and
 | |
| *>                  scaling.
 | |
| *>          JOB must be the same as the argument JOB supplied to ZGGBAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'R':  V contains right eigenvectors;
 | |
| *>          = 'L':  V contains left eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows of the matrix V.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>          The integers ILO and IHI determined by ZGGBAL.
 | |
| *>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LSCALE
 | |
| *> \verbatim
 | |
| *>          LSCALE is DOUBLE PRECISION array, dimension (N)
 | |
| *>          Details of the permutations and/or scaling factors applied
 | |
| *>          to the left side of A and B, as returned by ZGGBAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RSCALE
 | |
| *> \verbatim
 | |
| *>          RSCALE is DOUBLE PRECISION array, dimension (N)
 | |
| *>          Details of the permutations and/or scaling factors applied
 | |
| *>          to the right side of A and B, as returned by ZGGBAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of columns of the matrix V.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX*16 array, dimension (LDV,M)
 | |
| *>          On entry, the matrix of right or left eigenvectors to be
 | |
| *>          transformed, as returned by ZTGEVC.
 | |
| *>          On exit, V is overwritten by the transformed eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the matrix V. LDV >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16GBcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  See R.C. Ward, Balancing the generalized eigenvalue problem,
 | |
| *>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
 | |
|      $                   LDV, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOB, SIDE
 | |
|       INTEGER            IHI, ILO, INFO, LDV, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   LSCALE( * ), RSCALE( * )
 | |
|       COMPLEX*16         V( LDV, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LEFTV, RIGHTV
 | |
|       INTEGER            I, K
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZDSCAL, ZSWAP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       RIGHTV = LSAME( SIDE, 'R' )
 | |
|       LEFTV = LSAME( SIDE, 'L' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
 | |
|      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( ILO.LT.1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
 | |
|      $   THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZGGBAK', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
|       IF( M.EQ.0 )
 | |
|      $   RETURN
 | |
|       IF( LSAME( JOB, 'N' ) )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( ILO.EQ.IHI )
 | |
|      $   GO TO 30
 | |
| *
 | |
| *     Backward balance
 | |
| *
 | |
|       IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
 | |
| *
 | |
| *        Backward transformation on right eigenvectors
 | |
| *
 | |
|          IF( RIGHTV ) THEN
 | |
|             DO 10 I = ILO, IHI
 | |
|                CALL ZDSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
 | |
|    10       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Backward transformation on left eigenvectors
 | |
| *
 | |
|          IF( LEFTV ) THEN
 | |
|             DO 20 I = ILO, IHI
 | |
|                CALL ZDSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Backward permutation
 | |
| *
 | |
|    30 CONTINUE
 | |
|       IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
 | |
| *
 | |
| *        Backward permutation on right eigenvectors
 | |
| *
 | |
|          IF( RIGHTV ) THEN
 | |
|             IF( ILO.EQ.1 )
 | |
|      $         GO TO 50
 | |
|             DO 40 I = ILO - 1, 1, -1
 | |
|                K = RSCALE( I )
 | |
|                IF( K.EQ.I )
 | |
|      $            GO TO 40
 | |
|                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
 | |
|    40       CONTINUE
 | |
| *
 | |
|    50       CONTINUE
 | |
|             IF( IHI.EQ.N )
 | |
|      $         GO TO 70
 | |
|             DO 60 I = IHI + 1, N
 | |
|                K = RSCALE( I )
 | |
|                IF( K.EQ.I )
 | |
|      $            GO TO 60
 | |
|                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
 | |
|    60       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Backward permutation on left eigenvectors
 | |
| *
 | |
|    70    CONTINUE
 | |
|          IF( LEFTV ) THEN
 | |
|             IF( ILO.EQ.1 )
 | |
|      $         GO TO 90
 | |
|             DO 80 I = ILO - 1, 1, -1
 | |
|                K = LSCALE( I )
 | |
|                IF( K.EQ.I )
 | |
|      $            GO TO 80
 | |
|                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
 | |
|    80       CONTINUE
 | |
| *
 | |
|    90       CONTINUE
 | |
|             IF( IHI.EQ.N )
 | |
|      $         GO TO 110
 | |
|             DO 100 I = IHI + 1, N
 | |
|                K = LSCALE( I )
 | |
|                IF( K.EQ.I )
 | |
|      $            GO TO 100
 | |
|                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
 | |
|   100       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|   110 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGGBAK
 | |
| *
 | |
|       END
 |