435 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			435 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLAED0 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed0.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed0.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed0.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
 | |
| *                          WORK, IWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLAED0 computes all eigenvalues and corresponding eigenvectors of a
 | |
| *> symmetric tridiagonal matrix using the divide and conquer method.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ICOMPQ
 | |
| *> \verbatim
 | |
| *>          ICOMPQ is INTEGER
 | |
| *>          = 0:  Compute eigenvalues only.
 | |
| *>          = 1:  Compute eigenvectors of original dense symmetric matrix
 | |
| *>                also.  On entry, Q contains the orthogonal matrix used
 | |
| *>                to reduce the original matrix to tridiagonal form.
 | |
| *>          = 2:  Compute eigenvalues and eigenvectors of tridiagonal
 | |
| *>                matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] QSIZ
 | |
| *> \verbatim
 | |
| *>          QSIZ is INTEGER
 | |
| *>         The dimension of the orthogonal matrix used to reduce
 | |
| *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>         On entry, the main diagonal of the tridiagonal matrix.
 | |
| *>         On exit, its eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>         The off-diagonal elements of the tridiagonal matrix.
 | |
| *>         On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDQ, N)
 | |
| *>         On entry, Q must contain an N-by-N orthogonal matrix.
 | |
| *>         If ICOMPQ = 0    Q is not referenced.
 | |
| *>         If ICOMPQ = 1    On entry, Q is a subset of the columns of the
 | |
| *>                          orthogonal matrix used to reduce the full
 | |
| *>                          matrix to tridiagonal form corresponding to
 | |
| *>                          the subset of the full matrix which is being
 | |
| *>                          decomposed at this time.
 | |
| *>         If ICOMPQ = 2    On entry, Q will be the identity matrix.
 | |
| *>                          On exit, Q contains the eigenvectors of the
 | |
| *>                          tridiagonal matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>         The leading dimension of the array Q.  If eigenvectors are
 | |
| *>         desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] QSTORE
 | |
| *> \verbatim
 | |
| *>          QSTORE is REAL array, dimension (LDQS, N)
 | |
| *>         Referenced only when ICOMPQ = 1.  Used to store parts of
 | |
| *>         the eigenvector matrix when the updating matrix multiplies
 | |
| *>         take place.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQS
 | |
| *> \verbatim
 | |
| *>          LDQS is INTEGER
 | |
| *>         The leading dimension of the array QSTORE.  If ICOMPQ = 1,
 | |
| *>         then  LDQS >= max(1,N).  In any case,  LDQS >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array,
 | |
| *>         If ICOMPQ = 0 or 1, the dimension of WORK must be at least
 | |
| *>                     1 + 3*N + 2*N*lg N + 3*N**2
 | |
| *>                     ( lg( N ) = smallest integer k
 | |
| *>                                 such that 2^k >= N )
 | |
| *>         If ICOMPQ = 2, the dimension of WORK must be at least
 | |
| *>                     4*N + N**2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array,
 | |
| *>         If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
 | |
| *>                        6 + 6*N + 5*N*lg N.
 | |
| *>                        ( lg( N ) = smallest integer k
 | |
| *>                                    such that 2^k >= N )
 | |
| *>         If ICOMPQ = 2, the dimension of IWORK must be at least
 | |
| *>                        3 + 5*N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  The algorithm failed to compute an eigenvalue while
 | |
| *>                working on the submatrix lying in rows and columns
 | |
| *>                INFO/(N+1) through mod(INFO,N+1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Jeff Rutter, Computer Science Division, University of California
 | |
| *> at Berkeley, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
 | |
|      $                   WORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.E0, ONE = 1.E0, TWO = 2.E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
 | |
|      $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
 | |
|      $                   J, K, LGN, MATSIZ, MSD2, SMLSIZ, SMM1, SPM1,
 | |
|      $                   SPM2, SUBMAT, SUBPBS, TLVLS
 | |
|       REAL               TEMP
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SGEMM, SLACPY, SLAED1, SLAED7, SSTEQR,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, INT, LOG, MAX, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.2 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( ( ICOMPQ.EQ.1 ) .AND. ( QSIZ.LT.MAX( 0, N ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SLAED0', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       SMLSIZ = ILAENV( 9, 'SLAED0', ' ', 0, 0, 0, 0 )
 | |
| *
 | |
| *     Determine the size and placement of the submatrices, and save in
 | |
| *     the leading elements of IWORK.
 | |
| *
 | |
|       IWORK( 1 ) = N
 | |
|       SUBPBS = 1
 | |
|       TLVLS = 0
 | |
|    10 CONTINUE
 | |
|       IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
 | |
|          DO 20 J = SUBPBS, 1, -1
 | |
|             IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
 | |
|             IWORK( 2*J-1 ) = IWORK( J ) / 2
 | |
|    20    CONTINUE
 | |
|          TLVLS = TLVLS + 1
 | |
|          SUBPBS = 2*SUBPBS
 | |
|          GO TO 10
 | |
|       END IF
 | |
|       DO 30 J = 2, SUBPBS
 | |
|          IWORK( J ) = IWORK( J ) + IWORK( J-1 )
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
 | |
| *     using rank-1 modifications (cuts).
 | |
| *
 | |
|       SPM1 = SUBPBS - 1
 | |
|       DO 40 I = 1, SPM1
 | |
|          SUBMAT = IWORK( I ) + 1
 | |
|          SMM1 = SUBMAT - 1
 | |
|          D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
 | |
|          D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
 | |
|    40 CONTINUE
 | |
| *
 | |
|       INDXQ = 4*N + 3
 | |
|       IF( ICOMPQ.NE.2 ) THEN
 | |
| *
 | |
| *        Set up workspaces for eigenvalues only/accumulate new vectors
 | |
| *        routine
 | |
| *
 | |
|          TEMP = LOG( REAL( N ) ) / LOG( TWO )
 | |
|          LGN = INT( TEMP )
 | |
|          IF( 2**LGN.LT.N )
 | |
|      $      LGN = LGN + 1
 | |
|          IF( 2**LGN.LT.N )
 | |
|      $      LGN = LGN + 1
 | |
|          IPRMPT = INDXQ + N + 1
 | |
|          IPERM = IPRMPT + N*LGN
 | |
|          IQPTR = IPERM + N*LGN
 | |
|          IGIVPT = IQPTR + N + 2
 | |
|          IGIVCL = IGIVPT + N*LGN
 | |
| *
 | |
|          IGIVNM = 1
 | |
|          IQ = IGIVNM + 2*N*LGN
 | |
|          IWREM = IQ + N**2 + 1
 | |
| *
 | |
| *        Initialize pointers
 | |
| *
 | |
|          DO 50 I = 0, SUBPBS
 | |
|             IWORK( IPRMPT+I ) = 1
 | |
|             IWORK( IGIVPT+I ) = 1
 | |
|    50    CONTINUE
 | |
|          IWORK( IQPTR ) = 1
 | |
|       END IF
 | |
| *
 | |
| *     Solve each submatrix eigenproblem at the bottom of the divide and
 | |
| *     conquer tree.
 | |
| *
 | |
|       CURR = 0
 | |
|       DO 70 I = 0, SPM1
 | |
|          IF( I.EQ.0 ) THEN
 | |
|             SUBMAT = 1
 | |
|             MATSIZ = IWORK( 1 )
 | |
|          ELSE
 | |
|             SUBMAT = IWORK( I ) + 1
 | |
|             MATSIZ = IWORK( I+1 ) - IWORK( I )
 | |
|          END IF
 | |
|          IF( ICOMPQ.EQ.2 ) THEN
 | |
|             CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
 | |
|      $                   Q( SUBMAT, SUBMAT ), LDQ, WORK, INFO )
 | |
|             IF( INFO.NE.0 )
 | |
|      $         GO TO 130
 | |
|          ELSE
 | |
|             CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
 | |
|      $                   WORK( IQ-1+IWORK( IQPTR+CURR ) ), MATSIZ, WORK,
 | |
|      $                   INFO )
 | |
|             IF( INFO.NE.0 )
 | |
|      $         GO TO 130
 | |
|             IF( ICOMPQ.EQ.1 ) THEN
 | |
|                CALL SGEMM( 'N', 'N', QSIZ, MATSIZ, MATSIZ, ONE,
 | |
|      $                     Q( 1, SUBMAT ), LDQ, WORK( IQ-1+IWORK( IQPTR+
 | |
|      $                     CURR ) ), MATSIZ, ZERO, QSTORE( 1, SUBMAT ),
 | |
|      $                     LDQS )
 | |
|             END IF
 | |
|             IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
 | |
|             CURR = CURR + 1
 | |
|          END IF
 | |
|          K = 1
 | |
|          DO 60 J = SUBMAT, IWORK( I+1 )
 | |
|             IWORK( INDXQ+J ) = K
 | |
|             K = K + 1
 | |
|    60    CONTINUE
 | |
|    70 CONTINUE
 | |
| *
 | |
| *     Successively merge eigensystems of adjacent submatrices
 | |
| *     into eigensystem for the corresponding larger matrix.
 | |
| *
 | |
| *     while ( SUBPBS > 1 )
 | |
| *
 | |
|       CURLVL = 1
 | |
|    80 CONTINUE
 | |
|       IF( SUBPBS.GT.1 ) THEN
 | |
|          SPM2 = SUBPBS - 2
 | |
|          DO 90 I = 0, SPM2, 2
 | |
|             IF( I.EQ.0 ) THEN
 | |
|                SUBMAT = 1
 | |
|                MATSIZ = IWORK( 2 )
 | |
|                MSD2 = IWORK( 1 )
 | |
|                CURPRB = 0
 | |
|             ELSE
 | |
|                SUBMAT = IWORK( I ) + 1
 | |
|                MATSIZ = IWORK( I+2 ) - IWORK( I )
 | |
|                MSD2 = MATSIZ / 2
 | |
|                CURPRB = CURPRB + 1
 | |
|             END IF
 | |
| *
 | |
| *     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
 | |
| *     into an eigensystem of size MATSIZ.
 | |
| *     SLAED1 is used only for the full eigensystem of a tridiagonal
 | |
| *     matrix.
 | |
| *     SLAED7 handles the cases in which eigenvalues only or eigenvalues
 | |
| *     and eigenvectors of a full symmetric matrix (which was reduced to
 | |
| *     tridiagonal form) are desired.
 | |
| *
 | |
|             IF( ICOMPQ.EQ.2 ) THEN
 | |
|                CALL SLAED1( MATSIZ, D( SUBMAT ), Q( SUBMAT, SUBMAT ),
 | |
|      $                      LDQ, IWORK( INDXQ+SUBMAT ),
 | |
|      $                      E( SUBMAT+MSD2-1 ), MSD2, WORK,
 | |
|      $                      IWORK( SUBPBS+1 ), INFO )
 | |
|             ELSE
 | |
|                CALL SLAED7( ICOMPQ, MATSIZ, QSIZ, TLVLS, CURLVL, CURPRB,
 | |
|      $                      D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
 | |
|      $                      IWORK( INDXQ+SUBMAT ), E( SUBMAT+MSD2-1 ),
 | |
|      $                      MSD2, WORK( IQ ), IWORK( IQPTR ),
 | |
|      $                      IWORK( IPRMPT ), IWORK( IPERM ),
 | |
|      $                      IWORK( IGIVPT ), IWORK( IGIVCL ),
 | |
|      $                      WORK( IGIVNM ), WORK( IWREM ),
 | |
|      $                      IWORK( SUBPBS+1 ), INFO )
 | |
|             END IF
 | |
|             IF( INFO.NE.0 )
 | |
|      $         GO TO 130
 | |
|             IWORK( I / 2+1 ) = IWORK( I+2 )
 | |
|    90    CONTINUE
 | |
|          SUBPBS = SUBPBS / 2
 | |
|          CURLVL = CURLVL + 1
 | |
|          GO TO 80
 | |
|       END IF
 | |
| *
 | |
| *     end while
 | |
| *
 | |
| *     Re-merge the eigenvalues/vectors which were deflated at the final
 | |
| *     merge step.
 | |
| *
 | |
|       IF( ICOMPQ.EQ.1 ) THEN
 | |
|          DO 100 I = 1, N
 | |
|             J = IWORK( INDXQ+I )
 | |
|             WORK( I ) = D( J )
 | |
|             CALL SCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
 | |
|   100    CONTINUE
 | |
|          CALL SCOPY( N, WORK, 1, D, 1 )
 | |
|       ELSE IF( ICOMPQ.EQ.2 ) THEN
 | |
|          DO 110 I = 1, N
 | |
|             J = IWORK( INDXQ+I )
 | |
|             WORK( I ) = D( J )
 | |
|             CALL SCOPY( N, Q( 1, J ), 1, WORK( N*I+1 ), 1 )
 | |
|   110    CONTINUE
 | |
|          CALL SCOPY( N, WORK, 1, D, 1 )
 | |
|          CALL SLACPY( 'A', N, N, WORK( N+1 ), N, Q, LDQ )
 | |
|       ELSE
 | |
|          DO 120 I = 1, N
 | |
|             J = IWORK( INDXQ+I )
 | |
|             WORK( I ) = D( J )
 | |
|   120    CONTINUE
 | |
|          CALL SCOPY( N, WORK, 1, D, 1 )
 | |
|       END IF
 | |
|       GO TO 140
 | |
| *
 | |
|   130 CONTINUE
 | |
|       INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
 | |
| *
 | |
|   140 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLAED0
 | |
| *
 | |
|       END
 |