589 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			589 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CSYTRI2X
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CSYTRI2X + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytri2x.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytri2x.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytri2x.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, N, NB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX            A( LDA, * ), WORK( N+NB+1,* )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CSYTRI2X computes the inverse of a real symmetric indefinite matrix
 | |
| *> A using the factorization A = U*D*U**T or A = L*D*L**T computed by
 | |
| *> CSYTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the details of the factorization are stored
 | |
| *>          as an upper or lower triangular matrix.
 | |
| *>          = 'U':  Upper triangular, form is A = U*D*U**T;
 | |
| *>          = 'L':  Lower triangular, form is A = L*D*L**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the NNB diagonal matrix D and the multipliers
 | |
| *>          used to obtain the factor U or L as computed by CSYTRF.
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the (symmetric) inverse of the original
 | |
| *>          matrix.  If UPLO = 'U', the upper triangular part of the
 | |
| *>          inverse is formed and the part of A below the diagonal is not
 | |
| *>          referenced; if UPLO = 'L' the lower triangular part of the
 | |
| *>          inverse is formed and the part of A above the diagonal is
 | |
| *>          not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges and the NNB structure of D
 | |
| *>          as determined by CSYTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (N+NNB+1,NNB+3)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          Block size
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 | |
| *>               inverse could not be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complexSYcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, N, NB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX            A( LDA, * ), WORK( N+NB+1,* )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX              ONE, ZERO
 | |
|       PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
 | |
|      $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I, IINFO, IP, K, CUT, NNB
 | |
|       INTEGER            COUNT
 | |
|       INTEGER            J, U11, INVD
 | |
| 
 | |
|       COMPLEX   AK, AKKP1, AKP1, D, T
 | |
|       COMPLEX   U01_I_J, U01_IP1_J
 | |
|       COMPLEX   U11_I_J, U11_IP1_J
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CSYCONV, XERBLA, CTRTRI
 | |
|       EXTERNAL           CGEMM, CTRMM, CSYSWAPR
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CSYTRI2X', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Convert A
 | |
| *     Workspace got Non-diag elements of D
 | |
| *
 | |
|       CALL CSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
 | |
| *
 | |
| *     Check that the diagonal matrix D is nonsingular.
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Upper triangular storage: examine D from bottom to top
 | |
| *
 | |
|          DO INFO = N, 1, -1
 | |
|             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
 | |
|      $         RETURN
 | |
|          END DO
 | |
|       ELSE
 | |
| *
 | |
| *        Lower triangular storage: examine D from top to bottom.
 | |
| *
 | |
|          DO INFO = 1, N
 | |
|             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
 | |
|      $         RETURN
 | |
|          END DO
 | |
|       END IF
 | |
|       INFO = 0
 | |
| *
 | |
| *  Splitting Workspace
 | |
| *     U01 is a block (N,NB+1) 
 | |
| *     The first element of U01 is in WORK(1,1)
 | |
| *     U11 is a block (NB+1,NB+1)
 | |
| *     The first element of U11 is in WORK(N+1,1)
 | |
|       U11 = N
 | |
| *     INVD is a block (N,2)
 | |
| *     The first element of INVD is in WORK(1,INVD)
 | |
|       INVD = NB+2
 | |
| 
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        invA = P * inv(U**T)*inv(D)*inv(U)*P**T.
 | |
| *
 | |
|         CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
 | |
| *
 | |
| *       inv(D) and inv(D)*inv(U)
 | |
| * 
 | |
|         K=1
 | |
|         DO WHILE ( K .LE. N )
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *           1 x 1 diagonal NNB
 | |
|              WORK(K,INVD) = ONE /  A( K, K )
 | |
|              WORK(K,INVD+1) = 0
 | |
|             K=K+1
 | |
|          ELSE
 | |
| *           2 x 2 diagonal NNB
 | |
|              T = WORK(K+1,1)
 | |
|              AK = A( K, K ) / T
 | |
|              AKP1 = A( K+1, K+1 ) / T
 | |
|              AKKP1 = WORK(K+1,1)  / T
 | |
|              D = T*( AK*AKP1-ONE )
 | |
|              WORK(K,INVD) = AKP1 / D
 | |
|              WORK(K+1,INVD+1) = AK / D
 | |
|              WORK(K,INVD+1) = -AKKP1 / D  
 | |
|              WORK(K+1,INVD) = -AKKP1 / D  
 | |
|             K=K+2
 | |
|          END IF
 | |
|         END DO
 | |
| *
 | |
| *       inv(U**T) = (inv(U))**T
 | |
| *
 | |
| *       inv(U**T)*inv(D)*inv(U)
 | |
| *
 | |
|         CUT=N
 | |
|         DO WHILE (CUT .GT. 0)
 | |
|            NNB=NB
 | |
|            IF (CUT .LE. NNB) THEN
 | |
|               NNB=CUT
 | |
|            ELSE
 | |
|               COUNT = 0
 | |
| *             count negative elements, 
 | |
|               DO I=CUT+1-NNB,CUT
 | |
|                   IF (IPIV(I) .LT. 0) COUNT=COUNT+1
 | |
|               END DO
 | |
| *             need a even number for a clear cut
 | |
|               IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1
 | |
|            END IF
 | |
| 
 | |
|            CUT=CUT-NNB
 | |
| *
 | |
| *          U01 Block 
 | |
| *
 | |
|            DO I=1,CUT
 | |
|              DO J=1,NNB
 | |
|               WORK(I,J)=A(I,CUT+J)
 | |
|              END DO
 | |
|            END DO
 | |
| *
 | |
| *          U11 Block
 | |
| *
 | |
|            DO I=1,NNB
 | |
|              WORK(U11+I,I)=ONE
 | |
|              DO J=1,I-1
 | |
|                 WORK(U11+I,J)=ZERO
 | |
|              END DO
 | |
|              DO J=I+1,NNB
 | |
|                 WORK(U11+I,J)=A(CUT+I,CUT+J)
 | |
|              END DO
 | |
|            END DO
 | |
| *
 | |
| *          invD*U01
 | |
| *
 | |
|            I=1
 | |
|            DO WHILE (I .LE. CUT)
 | |
|              IF (IPIV(I) > 0) THEN
 | |
|                 DO J=1,NNB
 | |
|                     WORK(I,J)=WORK(I,INVD)*WORK(I,J)
 | |
|                 END DO
 | |
|                 I=I+1
 | |
|              ELSE
 | |
|                 DO J=1,NNB
 | |
|                    U01_I_J = WORK(I,J)
 | |
|                    U01_IP1_J = WORK(I+1,J)
 | |
|                    WORK(I,J)=WORK(I,INVD)*U01_I_J+
 | |
|      $                      WORK(I,INVD+1)*U01_IP1_J
 | |
|                    WORK(I+1,J)=WORK(I+1,INVD)*U01_I_J+
 | |
|      $                      WORK(I+1,INVD+1)*U01_IP1_J
 | |
|                 END DO
 | |
|                 I=I+2
 | |
|              END IF
 | |
|            END DO
 | |
| *
 | |
| *        invD1*U11
 | |
| *
 | |
|            I=1
 | |
|            DO WHILE (I .LE. NNB)
 | |
|              IF (IPIV(CUT+I) > 0) THEN
 | |
|                 DO J=I,NNB
 | |
|                     WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
 | |
|                 END DO
 | |
|                 I=I+1
 | |
|              ELSE
 | |
|                 DO J=I,NNB
 | |
|                    U11_I_J = WORK(U11+I,J)
 | |
|                    U11_IP1_J = WORK(U11+I+1,J)
 | |
|                 WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
 | |
|      $                      WORK(CUT+I,INVD+1)*WORK(U11+I+1,J)
 | |
|                 WORK(U11+I+1,J)=WORK(CUT+I+1,INVD)*U11_I_J+
 | |
|      $                      WORK(CUT+I+1,INVD+1)*U11_IP1_J
 | |
|                 END DO
 | |
|                 I=I+2
 | |
|              END IF
 | |
|            END DO
 | |
| *    
 | |
| *       U11**T*invD1*U11->U11
 | |
| *
 | |
|         CALL CTRMM('L','U','T','U',NNB, NNB,
 | |
|      $             ONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
 | |
| *
 | |
|          DO I=1,NNB
 | |
|             DO J=I,NNB
 | |
|               A(CUT+I,CUT+J)=WORK(U11+I,J)
 | |
|             END DO
 | |
|          END DO
 | |
| *
 | |
| *          U01**T*invD*U01->A(CUT+I,CUT+J)
 | |
| *
 | |
|          CALL CGEMM('T','N',NNB,NNB,CUT,ONE,A(1,CUT+1),LDA,
 | |
|      $              WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
 | |
| *
 | |
| *        U11 =  U11**T*invD1*U11 + U01**T*invD*U01
 | |
| *
 | |
|          DO I=1,NNB
 | |
|             DO J=I,NNB
 | |
|               A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
 | |
|             END DO
 | |
|          END DO
 | |
| *
 | |
| *        U01 =  U00**T*invD0*U01
 | |
| *
 | |
|          CALL CTRMM('L',UPLO,'T','U',CUT, NNB,
 | |
|      $             ONE,A,LDA,WORK,N+NB+1)
 | |
| 
 | |
| *
 | |
| *        Update U01
 | |
| *
 | |
|          DO I=1,CUT
 | |
|            DO J=1,NNB
 | |
|             A(I,CUT+J)=WORK(I,J)
 | |
|            END DO
 | |
|          END DO
 | |
| *
 | |
| *      Next Block
 | |
| *
 | |
|        END DO
 | |
| *
 | |
| *        Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T
 | |
| *  
 | |
|             I=1
 | |
|             DO WHILE ( I .LE. N )
 | |
|                IF( IPIV(I) .GT. 0 ) THEN
 | |
|                   IP=IPIV(I)
 | |
|                  IF (I .LT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, I ,IP )
 | |
|                  IF (I .GT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, IP ,I )
 | |
|                ELSE
 | |
|                  IP=-IPIV(I)
 | |
|                  I=I+1
 | |
|                  IF ( (I-1) .LT. IP) 
 | |
|      $                  CALL CSYSWAPR( UPLO, N, A, LDA, I-1 ,IP )
 | |
|                  IF ( (I-1) .GT. IP) 
 | |
|      $                  CALL CSYSWAPR( UPLO, N, A, LDA, IP ,I-1 )
 | |
|               ENDIF
 | |
|                I=I+1
 | |
|             END DO
 | |
|       ELSE
 | |
| *
 | |
| *        LOWER...
 | |
| *
 | |
| *        invA = P * inv(U**T)*inv(D)*inv(U)*P**T.
 | |
| *
 | |
|          CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
 | |
| *
 | |
| *       inv(D) and inv(D)*inv(U)
 | |
| * 
 | |
|         K=N
 | |
|         DO WHILE ( K .GE. 1 )
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *           1 x 1 diagonal NNB
 | |
|              WORK(K,INVD) = ONE /  A( K, K )
 | |
|              WORK(K,INVD+1) = 0
 | |
|             K=K-1
 | |
|          ELSE
 | |
| *           2 x 2 diagonal NNB
 | |
|              T = WORK(K-1,1)
 | |
|              AK = A( K-1, K-1 ) / T
 | |
|              AKP1 = A( K, K ) / T
 | |
|              AKKP1 = WORK(K-1,1) / T
 | |
|              D = T*( AK*AKP1-ONE )
 | |
|              WORK(K-1,INVD) = AKP1 / D
 | |
|              WORK(K,INVD) = AK / D
 | |
|              WORK(K,INVD+1) = -AKKP1 / D  
 | |
|              WORK(K-1,INVD+1) = -AKKP1 / D  
 | |
|             K=K-2
 | |
|          END IF
 | |
|         END DO
 | |
| *
 | |
| *       inv(U**T) = (inv(U))**T
 | |
| *
 | |
| *       inv(U**T)*inv(D)*inv(U)
 | |
| *
 | |
|         CUT=0
 | |
|         DO WHILE (CUT .LT. N)
 | |
|            NNB=NB
 | |
|            IF (CUT + NNB .GE. N) THEN
 | |
|               NNB=N-CUT
 | |
|            ELSE
 | |
|               COUNT = 0
 | |
| *             count negative elements, 
 | |
|               DO I=CUT+1,CUT+NNB
 | |
|                   IF (IPIV(I) .LT. 0) COUNT=COUNT+1
 | |
|               END DO
 | |
| *             need a even number for a clear cut
 | |
|               IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1
 | |
|            END IF
 | |
| *      L21 Block
 | |
|            DO I=1,N-CUT-NNB
 | |
|              DO J=1,NNB
 | |
|               WORK(I,J)=A(CUT+NNB+I,CUT+J)
 | |
|              END DO
 | |
|            END DO
 | |
| *     L11 Block
 | |
|            DO I=1,NNB
 | |
|              WORK(U11+I,I)=ONE
 | |
|              DO J=I+1,NNB
 | |
|                 WORK(U11+I,J)=ZERO
 | |
|              END DO
 | |
|              DO J=1,I-1
 | |
|                 WORK(U11+I,J)=A(CUT+I,CUT+J)
 | |
|              END DO
 | |
|            END DO
 | |
| *
 | |
| *          invD*L21
 | |
| *
 | |
|            I=N-CUT-NNB
 | |
|            DO WHILE (I .GE. 1)
 | |
|              IF (IPIV(CUT+NNB+I) > 0) THEN
 | |
|                 DO J=1,NNB
 | |
|                     WORK(I,J)=WORK(CUT+NNB+I,INVD)*WORK(I,J)
 | |
|                 END DO
 | |
|                 I=I-1
 | |
|              ELSE
 | |
|                 DO J=1,NNB
 | |
|                    U01_I_J = WORK(I,J)
 | |
|                    U01_IP1_J = WORK(I-1,J)
 | |
|                    WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
 | |
|      $                        WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
 | |
|                    WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
 | |
|      $                        WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
 | |
|                 END DO
 | |
|                 I=I-2
 | |
|              END IF
 | |
|            END DO
 | |
| *
 | |
| *        invD1*L11
 | |
| *
 | |
|            I=NNB
 | |
|            DO WHILE (I .GE. 1)
 | |
|              IF (IPIV(CUT+I) > 0) THEN
 | |
|                 DO J=1,NNB
 | |
|                     WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
 | |
|                 END DO
 | |
|                 I=I-1
 | |
|              ELSE
 | |
|                 DO J=1,NNB
 | |
|                    U11_I_J = WORK(U11+I,J)
 | |
|                    U11_IP1_J = WORK(U11+I-1,J)
 | |
|                 WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
 | |
|      $                      WORK(CUT+I,INVD+1)*U11_IP1_J
 | |
|                 WORK(U11+I-1,J)=WORK(CUT+I-1,INVD+1)*U11_I_J+
 | |
|      $                      WORK(CUT+I-1,INVD)*U11_IP1_J
 | |
|                 END DO
 | |
|                 I=I-2
 | |
|              END IF
 | |
|            END DO
 | |
| *    
 | |
| *       L11**T*invD1*L11->L11
 | |
| *
 | |
|         CALL CTRMM('L',UPLO,'T','U',NNB, NNB,
 | |
|      $             ONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
 | |
| *
 | |
|          DO I=1,NNB
 | |
|             DO J=1,I
 | |
|               A(CUT+I,CUT+J)=WORK(U11+I,J)
 | |
|             END DO
 | |
|          END DO
 | |
| *
 | |
|         IF ( (CUT+NNB) .LT. N ) THEN
 | |
| *
 | |
| *          L21**T*invD2*L21->A(CUT+I,CUT+J)
 | |
| *
 | |
|          CALL CGEMM('T','N',NNB,NNB,N-NNB-CUT,ONE,A(CUT+NNB+1,CUT+1)
 | |
|      $             ,LDA,WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
 | |
|        
 | |
| *
 | |
| *        L11 =  L11**T*invD1*L11 + U01**T*invD*U01
 | |
| *
 | |
|          DO I=1,NNB
 | |
|             DO J=1,I
 | |
|               A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
 | |
|             END DO
 | |
|          END DO
 | |
| *
 | |
| *        L01 =  L22**T*invD2*L21
 | |
| *
 | |
|          CALL CTRMM('L',UPLO,'T','U', N-NNB-CUT, NNB,
 | |
|      $             ONE,A(CUT+NNB+1,CUT+NNB+1),LDA,WORK,N+NB+1)
 | |
| 
 | |
| *      Update L21
 | |
|          DO I=1,N-CUT-NNB
 | |
|            DO J=1,NNB
 | |
|               A(CUT+NNB+I,CUT+J)=WORK(I,J)
 | |
|            END DO
 | |
|          END DO
 | |
|        ELSE
 | |
| *
 | |
| *        L11 =  L11**T*invD1*L11
 | |
| *
 | |
|          DO I=1,NNB
 | |
|             DO J=1,I
 | |
|               A(CUT+I,CUT+J)=WORK(U11+I,J)
 | |
|             END DO
 | |
|          END DO
 | |
|        END IF
 | |
| *
 | |
| *      Next Block
 | |
| *
 | |
|            CUT=CUT+NNB
 | |
|        END DO
 | |
| *
 | |
| *        Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T
 | |
| * 
 | |
|             I=N
 | |
|             DO WHILE ( I .GE. 1 )
 | |
|                IF( IPIV(I) .GT. 0 ) THEN
 | |
|                   IP=IPIV(I)
 | |
|                  IF (I .LT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, I ,IP  )
 | |
|                  IF (I .GT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, IP ,I )
 | |
|                ELSE
 | |
|                  IP=-IPIV(I)
 | |
|                  IF ( I .LT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, I ,IP )
 | |
|                  IF ( I .GT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, IP ,I )
 | |
|                  I=I-1
 | |
|                ENDIF
 | |
|                I=I-1
 | |
|             END DO
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CSYTRI2X
 | |
| *
 | |
|       END
 | |
| 
 |