843 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			843 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZBDSQR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZBDSQR + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbdsqr.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbdsqr.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbdsqr.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
 | |
| *                          LDU, C, LDC, RWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
 | |
| *       COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZBDSQR computes the singular values and, optionally, the right and/or
 | |
| *> left singular vectors from the singular value decomposition (SVD) of
 | |
| *> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
 | |
| *> zero-shift QR algorithm.  The SVD of B has the form
 | |
| *> 
 | |
| *>    B = Q * S * P**H
 | |
| *> 
 | |
| *> where S is the diagonal matrix of singular values, Q is an orthogonal
 | |
| *> matrix of left singular vectors, and P is an orthogonal matrix of
 | |
| *> right singular vectors.  If left singular vectors are requested, this
 | |
| *> subroutine actually returns U*Q instead of Q, and, if right singular
 | |
| *> vectors are requested, this subroutine returns P**H*VT instead of
 | |
| *> P**H, for given complex input matrices U and VT.  When U and VT are
 | |
| *> the unitary matrices that reduce a general matrix A to bidiagonal
 | |
| *> form: A = U*B*VT, as computed by ZGEBRD, then
 | |
| *> 
 | |
| *>    A = (U*Q) * S * (P**H*VT)
 | |
| *> 
 | |
| *> is the SVD of A.  Optionally, the subroutine may also compute Q**H*C
 | |
| *> for a given complex input matrix C.
 | |
| *>
 | |
| *> See "Computing  Small Singular Values of Bidiagonal Matrices With
 | |
| *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
 | |
| *> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
 | |
| *> no. 5, pp. 873-912, Sept 1990) and
 | |
| *> "Accurate singular values and differential qd algorithms," by
 | |
| *> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
 | |
| *> Department, University of California at Berkeley, July 1992
 | |
| *> for a detailed description of the algorithm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  B is upper bidiagonal;
 | |
| *>          = 'L':  B is lower bidiagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NCVT
 | |
| *> \verbatim
 | |
| *>          NCVT is INTEGER
 | |
| *>          The number of columns of the matrix VT. NCVT >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRU
 | |
| *> \verbatim
 | |
| *>          NRU is INTEGER
 | |
| *>          The number of rows of the matrix U. NRU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NCC
 | |
| *> \verbatim
 | |
| *>          NCC is INTEGER
 | |
| *>          The number of columns of the matrix C. NCC >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the n diagonal elements of the bidiagonal matrix B.
 | |
| *>          On exit, if INFO=0, the singular values of B in decreasing
 | |
| *>          order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          On entry, the N-1 offdiagonal elements of the bidiagonal
 | |
| *>          matrix B.
 | |
| *>          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
 | |
| *>          will contain the diagonal and superdiagonal elements of a
 | |
| *>          bidiagonal matrix orthogonally equivalent to the one given
 | |
| *>          as input.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VT
 | |
| *> \verbatim
 | |
| *>          VT is COMPLEX*16 array, dimension (LDVT, NCVT)
 | |
| *>          On entry, an N-by-NCVT matrix VT.
 | |
| *>          On exit, VT is overwritten by P**H * VT.
 | |
| *>          Not referenced if NCVT = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT
 | |
| *> \verbatim
 | |
| *>          LDVT is INTEGER
 | |
| *>          The leading dimension of the array VT.
 | |
| *>          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX*16 array, dimension (LDU, N)
 | |
| *>          On entry, an NRU-by-N matrix U.
 | |
| *>          On exit, U is overwritten by U * Q.
 | |
| *>          Not referenced if NRU = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U.  LDU >= max(1,NRU).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX*16 array, dimension (LDC, NCC)
 | |
| *>          On entry, an N-by-NCC matrix C.
 | |
| *>          On exit, C is overwritten by Q**H * C.
 | |
| *>          Not referenced if NCC = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C.
 | |
| *>          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (4*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  If INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  the algorithm did not converge; D and E contain the
 | |
| *>                elements of a bidiagonal matrix which is orthogonally
 | |
| *>                similar to the input matrix B;  if INFO = i, i
 | |
| *>                elements of E have not converged to zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Internal Parameters:
 | |
| *  =========================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
 | |
| *>          TOLMUL controls the convergence criterion of the QR loop.
 | |
| *>          If it is positive, TOLMUL*EPS is the desired relative
 | |
| *>             precision in the computed singular values.
 | |
| *>          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
 | |
| *>             desired absolute accuracy in the computed singular
 | |
| *>             values (corresponds to relative accuracy
 | |
| *>             abs(TOLMUL*EPS) in the largest singular value.
 | |
| *>          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
 | |
| *>             between 10 (for fast convergence) and .1/EPS
 | |
| *>             (for there to be some accuracy in the results).
 | |
| *>          Default is to lose at either one eighth or 2 of the
 | |
| *>             available decimal digits in each computed singular value
 | |
| *>             (whichever is smaller).
 | |
| *>
 | |
| *>  MAXITR  INTEGER, default = 6
 | |
| *>          MAXITR controls the maximum number of passes of the
 | |
| *>          algorithm through its inner loop. The algorithms stops
 | |
| *>          (and so fails to converge) if the number of passes
 | |
| *>          through the inner loop exceeds MAXITR*N**2.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2015
 | |
| *
 | |
| *> \ingroup complex16OTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
 | |
|      $                   LDU, C, LDC, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.6.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2015
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
 | |
|       COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D0 )
 | |
|       DOUBLE PRECISION   ONE
 | |
|       PARAMETER          ( ONE = 1.0D0 )
 | |
|       DOUBLE PRECISION   NEGONE
 | |
|       PARAMETER          ( NEGONE = -1.0D0 )
 | |
|       DOUBLE PRECISION   HNDRTH
 | |
|       PARAMETER          ( HNDRTH = 0.01D0 )
 | |
|       DOUBLE PRECISION   TEN
 | |
|       PARAMETER          ( TEN = 10.0D0 )
 | |
|       DOUBLE PRECISION   HNDRD
 | |
|       PARAMETER          ( HNDRD = 100.0D0 )
 | |
|       DOUBLE PRECISION   MEIGTH
 | |
|       PARAMETER          ( MEIGTH = -0.125D0 )
 | |
|       INTEGER            MAXITR
 | |
|       PARAMETER          ( MAXITR = 6 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LOWER, ROTATE
 | |
|       INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
 | |
|      $                   NM12, NM13, OLDLL, OLDM
 | |
|       DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
 | |
|      $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
 | |
|      $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
 | |
|      $                   SN, THRESH, TOL, TOLMUL, UNFL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           LSAME, DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASV2, XERBLA, ZDROT,
 | |
|      $                   ZDSCAL, ZLASR, ZSWAP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       LOWER = LSAME( UPLO, 'L' )
 | |
|       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NCVT.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NRU.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( NCC.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
 | |
|      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
 | |
|      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
 | |
|          INFO = -13
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZBDSQR', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
|       IF( N.EQ.1 )
 | |
|      $   GO TO 160
 | |
| *
 | |
| *     ROTATE is true if any singular vectors desired, false otherwise
 | |
| *
 | |
|       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
 | |
| *
 | |
| *     If no singular vectors desired, use qd algorithm
 | |
| *
 | |
|       IF( .NOT.ROTATE ) THEN
 | |
|          CALL DLASQ1( N, D, E, RWORK, INFO )
 | |
| *
 | |
| *     If INFO equals 2, dqds didn't finish, try to finish
 | |
| *         
 | |
|          IF( INFO .NE. 2 ) RETURN
 | |
|          INFO = 0
 | |
|       END IF
 | |
| *
 | |
|       NM1 = N - 1
 | |
|       NM12 = NM1 + NM1
 | |
|       NM13 = NM12 + NM1
 | |
|       IDIR = 0
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
| *
 | |
| *     If matrix lower bidiagonal, rotate to be upper bidiagonal
 | |
| *     by applying Givens rotations on the left
 | |
| *
 | |
|       IF( LOWER ) THEN
 | |
|          DO 10 I = 1, N - 1
 | |
|             CALL DLARTG( D( I ), E( I ), CS, SN, R )
 | |
|             D( I ) = R
 | |
|             E( I ) = SN*D( I+1 )
 | |
|             D( I+1 ) = CS*D( I+1 )
 | |
|             RWORK( I ) = CS
 | |
|             RWORK( NM1+I ) = SN
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        Update singular vectors if desired
 | |
| *
 | |
|          IF( NRU.GT.0 )
 | |
|      $      CALL ZLASR( 'R', 'V', 'F', NRU, N, RWORK( 1 ), RWORK( N ),
 | |
|      $                  U, LDU )
 | |
|          IF( NCC.GT.0 )
 | |
|      $      CALL ZLASR( 'L', 'V', 'F', N, NCC, RWORK( 1 ), RWORK( N ),
 | |
|      $                  C, LDC )
 | |
|       END IF
 | |
| *
 | |
| *     Compute singular values to relative accuracy TOL
 | |
| *     (By setting TOL to be negative, algorithm will compute
 | |
| *     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
 | |
| *
 | |
|       TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
 | |
|       TOL = TOLMUL*EPS
 | |
| *
 | |
| *     Compute approximate maximum, minimum singular values
 | |
| *
 | |
|       SMAX = ZERO
 | |
|       DO 20 I = 1, N
 | |
|          SMAX = MAX( SMAX, ABS( D( I ) ) )
 | |
|    20 CONTINUE
 | |
|       DO 30 I = 1, N - 1
 | |
|          SMAX = MAX( SMAX, ABS( E( I ) ) )
 | |
|    30 CONTINUE
 | |
|       SMINL = ZERO
 | |
|       IF( TOL.GE.ZERO ) THEN
 | |
| *
 | |
| *        Relative accuracy desired
 | |
| *
 | |
|          SMINOA = ABS( D( 1 ) )
 | |
|          IF( SMINOA.EQ.ZERO )
 | |
|      $      GO TO 50
 | |
|          MU = SMINOA
 | |
|          DO 40 I = 2, N
 | |
|             MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
 | |
|             SMINOA = MIN( SMINOA, MU )
 | |
|             IF( SMINOA.EQ.ZERO )
 | |
|      $         GO TO 50
 | |
|    40    CONTINUE
 | |
|    50    CONTINUE
 | |
|          SMINOA = SMINOA / SQRT( DBLE( N ) )
 | |
|          THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
 | |
|       ELSE
 | |
| *
 | |
| *        Absolute accuracy desired
 | |
| *
 | |
|          THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
 | |
|       END IF
 | |
| *
 | |
| *     Prepare for main iteration loop for the singular values
 | |
| *     (MAXIT is the maximum number of passes through the inner
 | |
| *     loop permitted before nonconvergence signalled.)
 | |
| *
 | |
|       MAXIT = MAXITR*N*N
 | |
|       ITER = 0
 | |
|       OLDLL = -1
 | |
|       OLDM = -1
 | |
| *
 | |
| *     M points to last element of unconverged part of matrix
 | |
| *
 | |
|       M = N
 | |
| *
 | |
| *     Begin main iteration loop
 | |
| *
 | |
|    60 CONTINUE
 | |
| *
 | |
| *     Check for convergence or exceeding iteration count
 | |
| *
 | |
|       IF( M.LE.1 )
 | |
|      $   GO TO 160
 | |
|       IF( ITER.GT.MAXIT )
 | |
|      $   GO TO 200
 | |
| *
 | |
| *     Find diagonal block of matrix to work on
 | |
| *
 | |
|       IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
 | |
|      $   D( M ) = ZERO
 | |
|       SMAX = ABS( D( M ) )
 | |
|       SMIN = SMAX
 | |
|       DO 70 LLL = 1, M - 1
 | |
|          LL = M - LLL
 | |
|          ABSS = ABS( D( LL ) )
 | |
|          ABSE = ABS( E( LL ) )
 | |
|          IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
 | |
|      $      D( LL ) = ZERO
 | |
|          IF( ABSE.LE.THRESH )
 | |
|      $      GO TO 80
 | |
|          SMIN = MIN( SMIN, ABSS )
 | |
|          SMAX = MAX( SMAX, ABSS, ABSE )
 | |
|    70 CONTINUE
 | |
|       LL = 0
 | |
|       GO TO 90
 | |
|    80 CONTINUE
 | |
|       E( LL ) = ZERO
 | |
| *
 | |
| *     Matrix splits since E(LL) = 0
 | |
| *
 | |
|       IF( LL.EQ.M-1 ) THEN
 | |
| *
 | |
| *        Convergence of bottom singular value, return to top of loop
 | |
| *
 | |
|          M = M - 1
 | |
|          GO TO 60
 | |
|       END IF
 | |
|    90 CONTINUE
 | |
|       LL = LL + 1
 | |
| *
 | |
| *     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
 | |
| *
 | |
|       IF( LL.EQ.M-1 ) THEN
 | |
| *
 | |
| *        2 by 2 block, handle separately
 | |
| *
 | |
|          CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
 | |
|      $                COSR, SINL, COSL )
 | |
|          D( M-1 ) = SIGMX
 | |
|          E( M-1 ) = ZERO
 | |
|          D( M ) = SIGMN
 | |
| *
 | |
| *        Compute singular vectors, if desired
 | |
| *
 | |
|          IF( NCVT.GT.0 )
 | |
|      $      CALL ZDROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT,
 | |
|      $                  COSR, SINR )
 | |
|          IF( NRU.GT.0 )
 | |
|      $      CALL ZDROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
 | |
|          IF( NCC.GT.0 )
 | |
|      $      CALL ZDROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
 | |
|      $                  SINL )
 | |
|          M = M - 2
 | |
|          GO TO 60
 | |
|       END IF
 | |
| *
 | |
| *     If working on new submatrix, choose shift direction
 | |
| *     (from larger end diagonal element towards smaller)
 | |
| *
 | |
|       IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
 | |
|          IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
 | |
| *
 | |
| *           Chase bulge from top (big end) to bottom (small end)
 | |
| *
 | |
|             IDIR = 1
 | |
|          ELSE
 | |
| *
 | |
| *           Chase bulge from bottom (big end) to top (small end)
 | |
| *
 | |
|             IDIR = 2
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Apply convergence tests
 | |
| *
 | |
|       IF( IDIR.EQ.1 ) THEN
 | |
| *
 | |
| *        Run convergence test in forward direction
 | |
| *        First apply standard test to bottom of matrix
 | |
| *
 | |
|          IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
 | |
|      $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
 | |
|             E( M-1 ) = ZERO
 | |
|             GO TO 60
 | |
|          END IF
 | |
| *
 | |
|          IF( TOL.GE.ZERO ) THEN
 | |
| *
 | |
| *           If relative accuracy desired,
 | |
| *           apply convergence criterion forward
 | |
| *
 | |
|             MU = ABS( D( LL ) )
 | |
|             SMINL = MU
 | |
|             DO 100 LLL = LL, M - 1
 | |
|                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
 | |
|                   E( LLL ) = ZERO
 | |
|                   GO TO 60
 | |
|                END IF
 | |
|                MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
 | |
|                SMINL = MIN( SMINL, MU )
 | |
|   100       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Run convergence test in backward direction
 | |
| *        First apply standard test to top of matrix
 | |
| *
 | |
|          IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
 | |
|      $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
 | |
|             E( LL ) = ZERO
 | |
|             GO TO 60
 | |
|          END IF
 | |
| *
 | |
|          IF( TOL.GE.ZERO ) THEN
 | |
| *
 | |
| *           If relative accuracy desired,
 | |
| *           apply convergence criterion backward
 | |
| *
 | |
|             MU = ABS( D( M ) )
 | |
|             SMINL = MU
 | |
|             DO 110 LLL = M - 1, LL, -1
 | |
|                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
 | |
|                   E( LLL ) = ZERO
 | |
|                   GO TO 60
 | |
|                END IF
 | |
|                MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
 | |
|                SMINL = MIN( SMINL, MU )
 | |
|   110       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
|       OLDLL = LL
 | |
|       OLDM = M
 | |
| *
 | |
| *     Compute shift.  First, test if shifting would ruin relative
 | |
| *     accuracy, and if so set the shift to zero.
 | |
| *
 | |
|       IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
 | |
|      $    MAX( EPS, HNDRTH*TOL ) ) THEN
 | |
| *
 | |
| *        Use a zero shift to avoid loss of relative accuracy
 | |
| *
 | |
|          SHIFT = ZERO
 | |
|       ELSE
 | |
| *
 | |
| *        Compute the shift from 2-by-2 block at end of matrix
 | |
| *
 | |
|          IF( IDIR.EQ.1 ) THEN
 | |
|             SLL = ABS( D( LL ) )
 | |
|             CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
 | |
|          ELSE
 | |
|             SLL = ABS( D( M ) )
 | |
|             CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
 | |
|          END IF
 | |
| *
 | |
| *        Test if shift negligible, and if so set to zero
 | |
| *
 | |
|          IF( SLL.GT.ZERO ) THEN
 | |
|             IF( ( SHIFT / SLL )**2.LT.EPS )
 | |
|      $         SHIFT = ZERO
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Increment iteration count
 | |
| *
 | |
|       ITER = ITER + M - LL
 | |
| *
 | |
| *     If SHIFT = 0, do simplified QR iteration
 | |
| *
 | |
|       IF( SHIFT.EQ.ZERO ) THEN
 | |
|          IF( IDIR.EQ.1 ) THEN
 | |
| *
 | |
| *           Chase bulge from top to bottom
 | |
| *           Save cosines and sines for later singular vector updates
 | |
| *
 | |
|             CS = ONE
 | |
|             OLDCS = ONE
 | |
|             DO 120 I = LL, M - 1
 | |
|                CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
 | |
|                IF( I.GT.LL )
 | |
|      $            E( I-1 ) = OLDSN*R
 | |
|                CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
 | |
|                RWORK( I-LL+1 ) = CS
 | |
|                RWORK( I-LL+1+NM1 ) = SN
 | |
|                RWORK( I-LL+1+NM12 ) = OLDCS
 | |
|                RWORK( I-LL+1+NM13 ) = OLDSN
 | |
|   120       CONTINUE
 | |
|             H = D( M )*CS
 | |
|             D( M ) = H*OLDCS
 | |
|             E( M-1 ) = H*OLDSN
 | |
| *
 | |
| *           Update singular vectors
 | |
| *
 | |
|             IF( NCVT.GT.0 )
 | |
|      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
 | |
|      $                     RWORK( N ), VT( LL, 1 ), LDVT )
 | |
|             IF( NRU.GT.0 )
 | |
|      $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
 | |
|      $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
 | |
|             IF( NCC.GT.0 )
 | |
|      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
 | |
|      $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
 | |
| *
 | |
| *           Test convergence
 | |
| *
 | |
|             IF( ABS( E( M-1 ) ).LE.THRESH )
 | |
|      $         E( M-1 ) = ZERO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Chase bulge from bottom to top
 | |
| *           Save cosines and sines for later singular vector updates
 | |
| *
 | |
|             CS = ONE
 | |
|             OLDCS = ONE
 | |
|             DO 130 I = M, LL + 1, -1
 | |
|                CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
 | |
|                IF( I.LT.M )
 | |
|      $            E( I ) = OLDSN*R
 | |
|                CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
 | |
|                RWORK( I-LL ) = CS
 | |
|                RWORK( I-LL+NM1 ) = -SN
 | |
|                RWORK( I-LL+NM12 ) = OLDCS
 | |
|                RWORK( I-LL+NM13 ) = -OLDSN
 | |
|   130       CONTINUE
 | |
|             H = D( LL )*CS
 | |
|             D( LL ) = H*OLDCS
 | |
|             E( LL ) = H*OLDSN
 | |
| *
 | |
| *           Update singular vectors
 | |
| *
 | |
|             IF( NCVT.GT.0 )
 | |
|      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
 | |
|      $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
 | |
|             IF( NRU.GT.0 )
 | |
|      $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
 | |
|      $                     RWORK( N ), U( 1, LL ), LDU )
 | |
|             IF( NCC.GT.0 )
 | |
|      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
 | |
|      $                     RWORK( N ), C( LL, 1 ), LDC )
 | |
| *
 | |
| *           Test convergence
 | |
| *
 | |
|             IF( ABS( E( LL ) ).LE.THRESH )
 | |
|      $         E( LL ) = ZERO
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Use nonzero shift
 | |
| *
 | |
|          IF( IDIR.EQ.1 ) THEN
 | |
| *
 | |
| *           Chase bulge from top to bottom
 | |
| *           Save cosines and sines for later singular vector updates
 | |
| *
 | |
|             F = ( ABS( D( LL ) )-SHIFT )*
 | |
|      $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
 | |
|             G = E( LL )
 | |
|             DO 140 I = LL, M - 1
 | |
|                CALL DLARTG( F, G, COSR, SINR, R )
 | |
|                IF( I.GT.LL )
 | |
|      $            E( I-1 ) = R
 | |
|                F = COSR*D( I ) + SINR*E( I )
 | |
|                E( I ) = COSR*E( I ) - SINR*D( I )
 | |
|                G = SINR*D( I+1 )
 | |
|                D( I+1 ) = COSR*D( I+1 )
 | |
|                CALL DLARTG( F, G, COSL, SINL, R )
 | |
|                D( I ) = R
 | |
|                F = COSL*E( I ) + SINL*D( I+1 )
 | |
|                D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
 | |
|                IF( I.LT.M-1 ) THEN
 | |
|                   G = SINL*E( I+1 )
 | |
|                   E( I+1 ) = COSL*E( I+1 )
 | |
|                END IF
 | |
|                RWORK( I-LL+1 ) = COSR
 | |
|                RWORK( I-LL+1+NM1 ) = SINR
 | |
|                RWORK( I-LL+1+NM12 ) = COSL
 | |
|                RWORK( I-LL+1+NM13 ) = SINL
 | |
|   140       CONTINUE
 | |
|             E( M-1 ) = F
 | |
| *
 | |
| *           Update singular vectors
 | |
| *
 | |
|             IF( NCVT.GT.0 )
 | |
|      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
 | |
|      $                     RWORK( N ), VT( LL, 1 ), LDVT )
 | |
|             IF( NRU.GT.0 )
 | |
|      $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
 | |
|      $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
 | |
|             IF( NCC.GT.0 )
 | |
|      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
 | |
|      $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
 | |
| *
 | |
| *           Test convergence
 | |
| *
 | |
|             IF( ABS( E( M-1 ) ).LE.THRESH )
 | |
|      $         E( M-1 ) = ZERO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Chase bulge from bottom to top
 | |
| *           Save cosines and sines for later singular vector updates
 | |
| *
 | |
|             F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
 | |
|      $          D( M ) )
 | |
|             G = E( M-1 )
 | |
|             DO 150 I = M, LL + 1, -1
 | |
|                CALL DLARTG( F, G, COSR, SINR, R )
 | |
|                IF( I.LT.M )
 | |
|      $            E( I ) = R
 | |
|                F = COSR*D( I ) + SINR*E( I-1 )
 | |
|                E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
 | |
|                G = SINR*D( I-1 )
 | |
|                D( I-1 ) = COSR*D( I-1 )
 | |
|                CALL DLARTG( F, G, COSL, SINL, R )
 | |
|                D( I ) = R
 | |
|                F = COSL*E( I-1 ) + SINL*D( I-1 )
 | |
|                D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
 | |
|                IF( I.GT.LL+1 ) THEN
 | |
|                   G = SINL*E( I-2 )
 | |
|                   E( I-2 ) = COSL*E( I-2 )
 | |
|                END IF
 | |
|                RWORK( I-LL ) = COSR
 | |
|                RWORK( I-LL+NM1 ) = -SINR
 | |
|                RWORK( I-LL+NM12 ) = COSL
 | |
|                RWORK( I-LL+NM13 ) = -SINL
 | |
|   150       CONTINUE
 | |
|             E( LL ) = F
 | |
| *
 | |
| *           Test convergence
 | |
| *
 | |
|             IF( ABS( E( LL ) ).LE.THRESH )
 | |
|      $         E( LL ) = ZERO
 | |
| *
 | |
| *           Update singular vectors if desired
 | |
| *
 | |
|             IF( NCVT.GT.0 )
 | |
|      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
 | |
|      $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
 | |
|             IF( NRU.GT.0 )
 | |
|      $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
 | |
|      $                     RWORK( N ), U( 1, LL ), LDU )
 | |
|             IF( NCC.GT.0 )
 | |
|      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
 | |
|      $                     RWORK( N ), C( LL, 1 ), LDC )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     QR iteration finished, go back and check convergence
 | |
| *
 | |
|       GO TO 60
 | |
| *
 | |
| *     All singular values converged, so make them positive
 | |
| *
 | |
|   160 CONTINUE
 | |
|       DO 170 I = 1, N
 | |
|          IF( D( I ).LT.ZERO ) THEN
 | |
|             D( I ) = -D( I )
 | |
| *
 | |
| *           Change sign of singular vectors, if desired
 | |
| *
 | |
|             IF( NCVT.GT.0 )
 | |
|      $         CALL ZDSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
 | |
|          END IF
 | |
|   170 CONTINUE
 | |
| *
 | |
| *     Sort the singular values into decreasing order (insertion sort on
 | |
| *     singular values, but only one transposition per singular vector)
 | |
| *
 | |
|       DO 190 I = 1, N - 1
 | |
| *
 | |
| *        Scan for smallest D(I)
 | |
| *
 | |
|          ISUB = 1
 | |
|          SMIN = D( 1 )
 | |
|          DO 180 J = 2, N + 1 - I
 | |
|             IF( D( J ).LE.SMIN ) THEN
 | |
|                ISUB = J
 | |
|                SMIN = D( J )
 | |
|             END IF
 | |
|   180    CONTINUE
 | |
|          IF( ISUB.NE.N+1-I ) THEN
 | |
| *
 | |
| *           Swap singular values and vectors
 | |
| *
 | |
|             D( ISUB ) = D( N+1-I )
 | |
|             D( N+1-I ) = SMIN
 | |
|             IF( NCVT.GT.0 )
 | |
|      $         CALL ZSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
 | |
|      $                     LDVT )
 | |
|             IF( NRU.GT.0 )
 | |
|      $         CALL ZSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
 | |
|             IF( NCC.GT.0 )
 | |
|      $         CALL ZSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
 | |
|          END IF
 | |
|   190 CONTINUE
 | |
|       GO TO 220
 | |
| *
 | |
| *     Maximum number of iterations exceeded, failure to converge
 | |
| *
 | |
|   200 CONTINUE
 | |
|       INFO = 0
 | |
|       DO 210 I = 1, N - 1
 | |
|          IF( E( I ).NE.ZERO )
 | |
|      $      INFO = INFO + 1
 | |
|   210 CONTINUE
 | |
|   220 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZBDSQR
 | |
| *
 | |
|       END
 |