387 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			387 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SPSTF2 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spstf2.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spstf2.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spstf2.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       REAL               TOL
 | |
| *       INTEGER            INFO, LDA, N, RANK
 | |
| *       CHARACTER          UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), WORK( 2*N )
 | |
| *       INTEGER            PIV( N )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SPSTF2 computes the Cholesky factorization with complete
 | |
| *> pivoting of a real symmetric positive semidefinite matrix A.
 | |
| *>
 | |
| *> The factorization has the form
 | |
| *>    P**T * A * P = U**T * U ,  if UPLO = 'U',
 | |
| *>    P**T * A * P = L  * L**T,  if UPLO = 'L',
 | |
| *> where U is an upper triangular matrix and L is lower triangular, and
 | |
| *> P is stored as vector PIV.
 | |
| *>
 | |
| *> This algorithm does not attempt to check that A is positive
 | |
| *> semidefinite. This version of the algorithm calls level 2 BLAS.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          symmetric matrix A is stored.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | |
| *>          n by n upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading n by n lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the factor U or L from the Cholesky
 | |
| *>          factorization as above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] PIV
 | |
| *> \verbatim
 | |
| *>          PIV is INTEGER array, dimension (N)
 | |
| *>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RANK
 | |
| *> \verbatim
 | |
| *>          RANK is INTEGER
 | |
| *>          The rank of A given by the number of steps the algorithm
 | |
| *>          completed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TOL
 | |
| *> \verbatim
 | |
| *>          TOL is REAL
 | |
| *>          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
 | |
| *>          will be used. The algorithm terminates at the (K-1)st step
 | |
| *>          if the pivot <= TOL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (2*N)
 | |
| *>          Work space.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          < 0: If INFO = -K, the K-th argument had an illegal value,
 | |
| *>          = 0: algorithm completed successfully, and
 | |
| *>          > 0: the matrix A is either rank deficient with computed rank
 | |
| *>               as returned in RANK, or is not positive semidefinite. See
 | |
| *>               Section 7 of LAPACK Working Note #161 for further
 | |
| *>               information.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2015
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.6.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2015
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       REAL               TOL
 | |
|       INTEGER            INFO, LDA, N, RANK
 | |
|       CHARACTER          UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), WORK( 2*N )
 | |
|       INTEGER            PIV( N )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               AJJ, SSTOP, STEMP
 | |
|       INTEGER            I, ITEMP, J, PVT
 | |
|       LOGICAL            UPPER
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       LOGICAL            LSAME, SISNAN
 | |
|       EXTERNAL           SLAMCH, LSAME, SISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEMV, SSCAL, SSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SQRT, MAXLOC
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SPSTF2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Initialize PIV
 | |
| *
 | |
|       DO 100 I = 1, N
 | |
|          PIV( I ) = I
 | |
|   100 CONTINUE
 | |
| *
 | |
| *     Compute stopping value
 | |
| *
 | |
|       PVT = 1
 | |
|       AJJ = A( PVT, PVT )
 | |
|       DO I = 2, N
 | |
|          IF( A( I, I ).GT.AJJ ) THEN
 | |
|             PVT = I
 | |
|             AJJ = A( PVT, PVT )
 | |
|          END IF
 | |
|       END DO
 | |
|       IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
 | |
|          RANK = 0
 | |
|          INFO = 1
 | |
|          GO TO 170
 | |
|       END IF
 | |
| *
 | |
| *     Compute stopping value if not supplied
 | |
| *
 | |
|       IF( TOL.LT.ZERO ) THEN
 | |
|          SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ
 | |
|       ELSE
 | |
|          SSTOP = TOL
 | |
|       END IF
 | |
| *
 | |
| *     Set first half of WORK to zero, holds dot products
 | |
| *
 | |
|       DO 110 I = 1, N
 | |
|          WORK( I ) = 0
 | |
|   110 CONTINUE
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Compute the Cholesky factorization P**T * A * P = U**T * U
 | |
| *
 | |
|          DO 130 J = 1, N
 | |
| *
 | |
| *        Find pivot, test for exit, else swap rows and columns
 | |
| *        Update dot products, compute possible pivots which are
 | |
| *        stored in the second half of WORK
 | |
| *
 | |
|             DO 120 I = J, N
 | |
| *
 | |
|                IF( J.GT.1 ) THEN
 | |
|                   WORK( I ) = WORK( I ) + A( J-1, I )**2
 | |
|                END IF
 | |
|                WORK( N+I ) = A( I, I ) - WORK( I )
 | |
| *
 | |
|   120       CONTINUE
 | |
| *
 | |
|             IF( J.GT.1 ) THEN
 | |
|                ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
 | |
|                PVT = ITEMP + J - 1
 | |
|                AJJ = WORK( N+PVT )
 | |
|                IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
 | |
|                   A( J, J ) = AJJ
 | |
|                   GO TO 160
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             IF( J.NE.PVT ) THEN
 | |
| *
 | |
| *              Pivot OK, so can now swap pivot rows and columns
 | |
| *
 | |
|                A( PVT, PVT ) = A( J, J )
 | |
|                CALL SSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
 | |
|                IF( PVT.LT.N )
 | |
|      $            CALL SSWAP( N-PVT, A( J, PVT+1 ), LDA,
 | |
|      $                        A( PVT, PVT+1 ), LDA )
 | |
|                CALL SSWAP( PVT-J-1, A( J, J+1 ), LDA, A( J+1, PVT ), 1 )
 | |
| *
 | |
| *              Swap dot products and PIV
 | |
| *
 | |
|                STEMP = WORK( J )
 | |
|                WORK( J ) = WORK( PVT )
 | |
|                WORK( PVT ) = STEMP
 | |
|                ITEMP = PIV( PVT )
 | |
|                PIV( PVT ) = PIV( J )
 | |
|                PIV( J ) = ITEMP
 | |
|             END IF
 | |
| *
 | |
|             AJJ = SQRT( AJJ )
 | |
|             A( J, J ) = AJJ
 | |
| *
 | |
| *           Compute elements J+1:N of row J
 | |
| *
 | |
|             IF( J.LT.N ) THEN
 | |
|                CALL SGEMV( 'Trans', J-1, N-J, -ONE, A( 1, J+1 ), LDA,
 | |
|      $                     A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
 | |
|                CALL SSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
 | |
|             END IF
 | |
| *
 | |
|   130    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compute the Cholesky factorization P**T * A * P = L * L**T
 | |
| *
 | |
|          DO 150 J = 1, N
 | |
| *
 | |
| *        Find pivot, test for exit, else swap rows and columns
 | |
| *        Update dot products, compute possible pivots which are
 | |
| *        stored in the second half of WORK
 | |
| *
 | |
|             DO 140 I = J, N
 | |
| *
 | |
|                IF( J.GT.1 ) THEN
 | |
|                   WORK( I ) = WORK( I ) + A( I, J-1 )**2
 | |
|                END IF
 | |
|                WORK( N+I ) = A( I, I ) - WORK( I )
 | |
| *
 | |
|   140       CONTINUE
 | |
| *
 | |
|             IF( J.GT.1 ) THEN
 | |
|                ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
 | |
|                PVT = ITEMP + J - 1
 | |
|                AJJ = WORK( N+PVT )
 | |
|                IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
 | |
|                   A( J, J ) = AJJ
 | |
|                   GO TO 160
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             IF( J.NE.PVT ) THEN
 | |
| *
 | |
| *              Pivot OK, so can now swap pivot rows and columns
 | |
| *
 | |
|                A( PVT, PVT ) = A( J, J )
 | |
|                CALL SSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
 | |
|                IF( PVT.LT.N )
 | |
|      $            CALL SSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
 | |
|      $                        1 )
 | |
|                CALL SSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ), LDA )
 | |
| *
 | |
| *              Swap dot products and PIV
 | |
| *
 | |
|                STEMP = WORK( J )
 | |
|                WORK( J ) = WORK( PVT )
 | |
|                WORK( PVT ) = STEMP
 | |
|                ITEMP = PIV( PVT )
 | |
|                PIV( PVT ) = PIV( J )
 | |
|                PIV( J ) = ITEMP
 | |
|             END IF
 | |
| *
 | |
|             AJJ = SQRT( AJJ )
 | |
|             A( J, J ) = AJJ
 | |
| *
 | |
| *           Compute elements J+1:N of column J
 | |
| *
 | |
|             IF( J.LT.N ) THEN
 | |
|                CALL SGEMV( 'No Trans', N-J, J-1, -ONE, A( J+1, 1 ), LDA,
 | |
|      $                     A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
 | |
|                CALL SSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
 | |
|             END IF
 | |
| *
 | |
|   150    CONTINUE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Ran to completion, A has full rank
 | |
| *
 | |
|       RANK = N
 | |
| *
 | |
|       GO TO 170
 | |
|   160 CONTINUE
 | |
| *
 | |
| *     Rank is number of steps completed.  Set INFO = 1 to signal
 | |
| *     that the factorization cannot be used to solve a system.
 | |
| *
 | |
|       RANK = J - 1
 | |
|       INFO = 1
 | |
| *
 | |
|   170 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of SPSTF2
 | |
| *
 | |
|       END
 |