238 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			238 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SPOTRF2
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       RECURSIVE SUBROUTINE SPOTRF2( UPLO, N, A, LDA, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SPOTRF2 computes the Cholesky factorization of a real symmetric
 | |
| *> positive definite matrix A using the recursive algorithm.
 | |
| *>
 | |
| *> The factorization has the form
 | |
| *>    A = U**T * U,  if UPLO = 'U', or
 | |
| *>    A = L  * L**T,  if UPLO = 'L',
 | |
| *> where U is an upper triangular matrix and L is lower triangular.
 | |
| *>
 | |
| *> This is the recursive version of the algorithm. It divides
 | |
| *> the matrix into four submatrices:
 | |
| *>
 | |
| *>        [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
 | |
| *>    A = [ -----|----- ]  with n1 = n/2
 | |
| *>        [  A21 | A22  ]       n2 = n-n1
 | |
| *>
 | |
| *> The subroutine calls itself to factor A11. Update and scale A21
 | |
| *> or A12, update A22 then call itself to factor A22.
 | |
| *> 
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | |
| *>          N-by-N upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading N-by-N lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the factor U or L from the Cholesky
 | |
| *>          factorization A = U**T*U or A = L*L**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, the leading minor of order i is not
 | |
| *>                positive definite, and the factorization could not be
 | |
| *>                completed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2015
 | |
| *
 | |
| *> \ingroup realPOcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       RECURSIVE SUBROUTINE SPOTRF2( UPLO, N, A, LDA, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.6.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2015
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO=0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER            
 | |
|       INTEGER            N1, N2, IINFO
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, SISNAN
 | |
|       EXTERNAL           LSAME, SISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEMM, SSYRK, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SPOTRF2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     N=1 case
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
| *
 | |
| *        Test for non-positive-definiteness
 | |
| *
 | |
|          IF( A( 1, 1 ).LE.ZERO.OR.SISNAN( A( 1, 1 ) ) ) THEN
 | |
|             INFO = 1
 | |
|             RETURN
 | |
|          END IF
 | |
| *
 | |
| *        Factor
 | |
| *
 | |
|          A( 1, 1 ) = SQRT( A( 1, 1 ) )
 | |
| *
 | |
| *     Use recursive code
 | |
| *
 | |
|       ELSE
 | |
|          N1 = N/2
 | |
|          N2 = N-N1
 | |
| *
 | |
| *        Factor A11
 | |
| *
 | |
|          CALL SPOTRF2( UPLO, N1, A( 1, 1 ), LDA, IINFO )
 | |
|          IF ( IINFO.NE.0 ) THEN
 | |
|             INFO = IINFO
 | |
|             RETURN
 | |
|          END IF    
 | |
| *
 | |
| *        Compute the Cholesky factorization A = U**T*U
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
| *
 | |
| *           Update and scale A12
 | |
| *
 | |
|             CALL STRSM( 'L', 'U', 'T', 'N', N1, N2, ONE,
 | |
|      $                  A( 1, 1 ), LDA, A( 1, N1+1 ), LDA )
 | |
| *
 | |
| *           Update and factor A22
 | |
| *          
 | |
|             CALL SSYRK( UPLO, 'T', N2, N1, -ONE, A( 1, N1+1 ), LDA,
 | |
|      $                  ONE, A( N1+1, N1+1 ), LDA )
 | |
|             CALL SPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO )
 | |
|             IF ( IINFO.NE.0 ) THEN
 | |
|                INFO = IINFO + N1
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
| *        Compute the Cholesky factorization A = L*L**T
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Update and scale A21
 | |
| *
 | |
|             CALL STRSM( 'R', 'L', 'T', 'N', N2, N1, ONE,
 | |
|      $                  A( 1, 1 ), LDA, A( N1+1, 1 ), LDA )
 | |
| *
 | |
| *           Update and factor A22
 | |
| *
 | |
|             CALL SSYRK( UPLO, 'N', N2, N1, -ONE, A( N1+1, 1 ), LDA,
 | |
|      $                  ONE, A( N1+1, N1+1 ), LDA )
 | |
|             CALL SPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO )
 | |
|             IF ( IINFO.NE.0 ) THEN
 | |
|                INFO = IINFO + N1
 | |
|                RETURN
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of SPOTRF2
 | |
| *
 | |
|       END
 |