225 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			225 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLASQ1 computes the singular values of a real square bidiagonal matrix. Used by sbdsqr.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLASQ1 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq1.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq1.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq1.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLASQ1( N, D, E, WORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               D( * ), E( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLASQ1 computes the singular values of a real N-by-N bidiagonal
 | |
| *> matrix with diagonal D and off-diagonal E. The singular values
 | |
| *> are computed to high relative accuracy, in the absence of
 | |
| *> denormalization, underflow and overflow. The algorithm was first
 | |
| *> presented in
 | |
| *>
 | |
| *> "Accurate singular values and differential qd algorithms" by K. V.
 | |
| *> Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
 | |
| *> 1994,
 | |
| *>
 | |
| *> and the present implementation is described in "An implementation of
 | |
| *> the dqds Algorithm (Positive Case)", LAPACK Working Note.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>        The number of rows and columns in the matrix. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>        On entry, D contains the diagonal elements of the
 | |
| *>        bidiagonal matrix whose SVD is desired. On normal exit,
 | |
| *>        D contains the singular values in decreasing order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N)
 | |
| *>        On entry, elements E(1:N-1) contain the off-diagonal elements
 | |
| *>        of the bidiagonal matrix whose SVD is desired.
 | |
| *>        On exit, E is overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (4*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>        = 0: successful exit
 | |
| *>        < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>        > 0: the algorithm failed
 | |
| *>             = 1, a split was marked by a positive value in E
 | |
| *>             = 2, current block of Z not diagonalized after 100*N
 | |
| *>                  iterations (in inner while loop)  On exit D and E
 | |
| *>                  represent a matrix with the same singular values
 | |
| *>                  which the calling subroutine could use to finish the
 | |
| *>                  computation, or even feed back into SLASQ1
 | |
| *>             = 3, termination criterion of outer while loop not met 
 | |
| *>                  (program created more than N unreduced blocks)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2015
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLASQ1( N, D, E, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.6.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2015
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               D( * ), E( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IINFO
 | |
|       REAL               EPS, SCALE, SAFMIN, SIGMN, SIGMX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SLAS2, SLASCL, SLASQ2, SLASRT, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           SLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|          CALL XERBLA( 'SLASQ1', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( N.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       ELSE IF( N.EQ.1 ) THEN
 | |
|          D( 1 ) = ABS( D( 1 ) )
 | |
|          RETURN
 | |
|       ELSE IF( N.EQ.2 ) THEN
 | |
|          CALL SLAS2( D( 1 ), E( 1 ), D( 2 ), SIGMN, SIGMX )
 | |
|          D( 1 ) = SIGMX
 | |
|          D( 2 ) = SIGMN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Estimate the largest singular value.
 | |
| *
 | |
|       SIGMX = ZERO
 | |
|       DO 10 I = 1, N - 1
 | |
|          D( I ) = ABS( D( I ) )
 | |
|          SIGMX = MAX( SIGMX, ABS( E( I ) ) )
 | |
|    10 CONTINUE
 | |
|       D( N ) = ABS( D( N ) )
 | |
| *
 | |
| *     Early return if SIGMX is zero (matrix is already diagonal).
 | |
| *
 | |
|       IF( SIGMX.EQ.ZERO ) THEN
 | |
|          CALL SLASRT( 'D', N, D, IINFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       DO 20 I = 1, N
 | |
|          SIGMX = MAX( SIGMX, D( I ) )
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Copy D and E into WORK (in the Z format) and scale (squaring the
 | |
| *     input data makes scaling by a power of the radix pointless).
 | |
| *
 | |
|       EPS = SLAMCH( 'Precision' )
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       SCALE = SQRT( EPS / SAFMIN )
 | |
|       CALL SCOPY( N, D, 1, WORK( 1 ), 2 )
 | |
|       CALL SCOPY( N-1, E, 1, WORK( 2 ), 2 )
 | |
|       CALL SLASCL( 'G', 0, 0, SIGMX, SCALE, 2*N-1, 1, WORK, 2*N-1,
 | |
|      $             IINFO )
 | |
| *         
 | |
| *     Compute the q's and e's.
 | |
| *
 | |
|       DO 30 I = 1, 2*N - 1
 | |
|          WORK( I ) = WORK( I )**2
 | |
|    30 CONTINUE
 | |
|       WORK( 2*N ) = ZERO
 | |
| *
 | |
|       CALL SLASQ2( N, WORK, INFO )
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          DO 40 I = 1, N
 | |
|             D( I ) = SQRT( WORK( I ) )
 | |
|    40    CONTINUE
 | |
|          CALL SLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, D, N, IINFO )
 | |
|       ELSE IF( INFO.EQ.2 ) THEN
 | |
| *
 | |
| *     Maximum number of iterations exceeded.  Move data from WORK
 | |
| *     into D and E so the calling subroutine can try to finish
 | |
| *
 | |
|          DO I = 1, N
 | |
|             D( I ) = SQRT( WORK( 2*I-1 ) )
 | |
|             E( I ) = SQRT( WORK( 2*I ) )
 | |
|          END DO
 | |
|          CALL SLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, D, N, IINFO )
 | |
|          CALL SLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, E, N, IINFO )
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLASQ1
 | |
| *
 | |
|       END
 |