300 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			300 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGGQRF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGGQRF + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggqrf.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggqrf.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggqrf.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
 | |
| *                          LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGGQRF computes a generalized QR factorization of an N-by-M matrix A
 | |
| *> and an N-by-P matrix B:
 | |
| *>
 | |
| *>             A = Q*R,        B = Q*T*Z,
 | |
| *>
 | |
| *> where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
 | |
| *> matrix, and R and T assume one of the forms:
 | |
| *>
 | |
| *> if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
 | |
| *>                 (  0  ) N-M                         N   M-N
 | |
| *>                    M
 | |
| *>
 | |
| *> where R11 is upper triangular, and
 | |
| *>
 | |
| *> if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
 | |
| *>                  P-N  N                           ( T21 ) P
 | |
| *>                                                      P
 | |
| *>
 | |
| *> where T12 or T21 is upper triangular.
 | |
| *>
 | |
| *> In particular, if B is square and nonsingular, the GQR factorization
 | |
| *> of A and B implicitly gives the QR factorization of inv(B)*A:
 | |
| *>
 | |
| *>              inv(B)*A = Z**T*(inv(T)*R)
 | |
| *>
 | |
| *> where inv(B) denotes the inverse of the matrix B, and Z**T denotes the
 | |
| *> transpose of the matrix Z.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows of the matrices A and B. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of columns of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of columns of the matrix B.  P >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,M)
 | |
| *>          On entry, the N-by-M matrix A.
 | |
| *>          On exit, the elements on and above the diagonal of the array
 | |
| *>          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
 | |
| *>          upper triangular if N >= M); the elements below the diagonal,
 | |
| *>          with the array TAUA, represent the orthogonal matrix Q as a
 | |
| *>          product of min(N,M) elementary reflectors (see Further
 | |
| *>          Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUA
 | |
| *> \verbatim
 | |
| *>          TAUA is REAL array, dimension (min(N,M))
 | |
| *>          The scalar factors of the elementary reflectors which
 | |
| *>          represent the orthogonal matrix Q (see Further Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,P)
 | |
| *>          On entry, the N-by-P matrix B.
 | |
| *>          On exit, if N <= P, the upper triangle of the subarray
 | |
| *>          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
 | |
| *>          if N > P, the elements on and above the (N-P)-th subdiagonal
 | |
| *>          contain the N-by-P upper trapezoidal matrix T; the remaining
 | |
| *>          elements, with the array TAUB, represent the orthogonal
 | |
| *>          matrix Z as a product of elementary reflectors (see Further
 | |
| *>          Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUB
 | |
| *> \verbatim
 | |
| *>          TAUB is REAL array, dimension (min(N,P))
 | |
| *>          The scalar factors of the elementary reflectors which
 | |
| *>          represent the orthogonal matrix Z (see Further Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,N,M,P).
 | |
| *>          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
 | |
| *>          where NB1 is the optimal blocksize for the QR factorization
 | |
| *>          of an N-by-M matrix, NB2 is the optimal blocksize for the
 | |
| *>          RQ factorization of an N-by-P matrix, and NB3 is the optimal
 | |
| *>          blocksize for a call of SORMQR.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrix Q is represented as a product of elementary reflectors
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(k), where k = min(n,m).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - taua * v * v**T
 | |
| *>
 | |
| *>  where taua is a real scalar, and v is a real vector with
 | |
| *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
 | |
| *>  and taua in TAUA(i).
 | |
| *>  To form Q explicitly, use LAPACK subroutine SORGQR.
 | |
| *>  To use Q to update another matrix, use LAPACK subroutine SORMQR.
 | |
| *>
 | |
| *>  The matrix Z is represented as a product of elementary reflectors
 | |
| *>
 | |
| *>     Z = H(1) H(2) . . . H(k), where k = min(n,p).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - taub * v * v**T
 | |
| *>
 | |
| *>  where taub is a real scalar, and v is a real vector with
 | |
| *>  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
 | |
| *>  B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
 | |
| *>  To form Z explicitly, use LAPACK subroutine SORGRQ.
 | |
| *>  To use Z to update another matrix, use LAPACK subroutine SORMRQ.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
 | |
|      $                   LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEQRF, SGERQF, SORMQR, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV 
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          INT, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       NB1 = ILAENV( 1, 'SGEQRF', ' ', N, M, -1, -1 )
 | |
|       NB2 = ILAENV( 1, 'SGERQF', ' ', N, P, -1, -1 )
 | |
|       NB3 = ILAENV( 1, 'SORMQR', ' ', N, M, P, -1 )
 | |
|       NB = MAX( NB1, NB2, NB3 )
 | |
|       LWKOPT = MAX( N, M, P )*NB
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( P.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -11
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGGQRF', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     QR factorization of N-by-M matrix A: A = Q*R
 | |
| *
 | |
|       CALL SGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO )
 | |
|       LOPT = WORK( 1 )
 | |
| *
 | |
| *     Update B := Q**T*B.
 | |
| *
 | |
|       CALL SORMQR( 'Left', 'Transpose', N, P, MIN( N, M ), A, LDA, TAUA,
 | |
|      $             B, LDB, WORK, LWORK, INFO )
 | |
|       LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
 | |
| *
 | |
| *     RQ factorization of N-by-P matrix B: B = T*Z.
 | |
| *
 | |
|       CALL SGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO )
 | |
|       WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGGQRF
 | |
| *
 | |
|       END
 |