900 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			900 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGGHD3
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGGHD3 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgghd3.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgghd3.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgghd3.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *        SUBROUTINE CGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
 | |
| *       $                   LDQ, Z, LDZ, WORK, LWORK, INFO )
 | |
| *
 | |
| *        .. Scalar Arguments ..
 | |
| *        CHARACTER          COMPQ, COMPZ
 | |
| *        INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
 | |
| *        ..
 | |
| *        .. Array Arguments ..
 | |
| *        COMPLEX            A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
| *       $                   Z( LDZ, * ), WORK( * )
 | |
| *        ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>
 | |
| *> CGGHD3 reduces a pair of complex matrices (A,B) to generalized upper
 | |
| *> Hessenberg form using unitary transformations, where A is a
 | |
| *> general matrix and B is upper triangular.  The form of the
 | |
| *> generalized eigenvalue problem is
 | |
| *>    A*x = lambda*B*x,
 | |
| *> and B is typically made upper triangular by computing its QR
 | |
| *> factorization and moving the unitary matrix Q to the left side
 | |
| *> of the equation.
 | |
| *>
 | |
| *> This subroutine simultaneously reduces A to a Hessenberg matrix H:
 | |
| *>    Q**H*A*Z = H
 | |
| *> and transforms B to another upper triangular matrix T:
 | |
| *>    Q**H*B*Z = T
 | |
| *> in order to reduce the problem to its standard form
 | |
| *>    H*y = lambda*T*y
 | |
| *> where y = Z**H*x.
 | |
| *>
 | |
| *> The unitary matrices Q and Z are determined as products of Givens
 | |
| *> rotations.  They may either be formed explicitly, or they may be
 | |
| *> postmultiplied into input matrices Q1 and Z1, so that
 | |
| *>
 | |
| *>      Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H
 | |
| *>
 | |
| *>      Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H
 | |
| *>
 | |
| *> If Q1 is the unitary matrix from the QR factorization of B in the
 | |
| *> original equation A*x = lambda*B*x, then CGGHD3 reduces the original
 | |
| *> problem to generalized Hessenberg form.
 | |
| *>
 | |
| *> This is a blocked variant of CGGHRD, using matrix-matrix
 | |
| *> multiplications for parts of the computation to enhance performance.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] COMPQ
 | |
| *> \verbatim
 | |
| *>          COMPQ is CHARACTER*1
 | |
| *>          = 'N': do not compute Q;
 | |
| *>          = 'I': Q is initialized to the unit matrix, and the
 | |
| *>                 unitary matrix Q is returned;
 | |
| *>          = 'V': Q must contain a unitary matrix Q1 on entry,
 | |
| *>                 and the product Q1*Q is returned.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] COMPZ
 | |
| *> \verbatim
 | |
| *>          COMPZ is CHARACTER*1
 | |
| *>          = 'N': do not compute Z;
 | |
| *>          = 'I': Z is initialized to the unit matrix, and the
 | |
| *>                 unitary matrix Z is returned;
 | |
| *>          = 'V': Z must contain a unitary matrix Z1 on entry,
 | |
| *>                 and the product Z1*Z is returned.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>
 | |
| *>          ILO and IHI mark the rows and columns of A which are to be
 | |
| *>          reduced.  It is assumed that A is already upper triangular
 | |
| *>          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are
 | |
| *>          normally set by a previous call to CGGBAL; otherwise they
 | |
| *>          should be set to 1 and N respectively.
 | |
| *>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA, N)
 | |
| *>          On entry, the N-by-N general matrix to be reduced.
 | |
| *>          On exit, the upper triangle and the first subdiagonal of A
 | |
| *>          are overwritten with the upper Hessenberg matrix H, and the
 | |
| *>          rest is set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB, N)
 | |
| *>          On entry, the N-by-N upper triangular matrix B.
 | |
| *>          On exit, the upper triangular matrix T = Q**H B Z.  The
 | |
| *>          elements below the diagonal are set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX array, dimension (LDQ, N)
 | |
| *>          On entry, if COMPQ = 'V', the unitary matrix Q1, typically
 | |
| *>          from the QR factorization of B.
 | |
| *>          On exit, if COMPQ='I', the unitary matrix Q, and if
 | |
| *>          COMPQ = 'V', the product Q1*Q.
 | |
| *>          Not referenced if COMPQ='N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q.
 | |
| *>          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDZ, N)
 | |
| *>          On entry, if COMPZ = 'V', the unitary matrix Z1.
 | |
| *>          On exit, if COMPZ='I', the unitary matrix Z, and if
 | |
| *>          COMPZ = 'V', the product Z1*Z.
 | |
| *>          Not referenced if COMPZ='N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.
 | |
| *>          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in]  LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  LWORK >= 1.
 | |
| *>          For optimum performance LWORK >= 6*N*NB, where NB is the
 | |
| *>          optimal blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date January 2015
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  This routine reduces A to Hessenberg form and maintains B in
 | |
| *>  using a blocked variant of Moler and Stewart's original algorithm,
 | |
| *>  as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti
 | |
| *>  (BIT 2008).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
 | |
|      $                   LDQ, Z, LDZ, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.6.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     January 2015
 | |
| *
 | |
| *
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          COMPQ, COMPZ
 | |
|       INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
|      $                   Z( LDZ, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            CONE, CZERO
 | |
|       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ),
 | |
|      $                     CZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BLK22, INITQ, INITZ, LQUERY, WANTQ, WANTZ
 | |
|       CHARACTER*1        COMPQ2, COMPZ2
 | |
|       INTEGER            COLA, I, IERR, J, J0, JCOL, JJ, JROW, K,
 | |
|      $                   KACC22, LEN, LWKOPT, N2NB, NB, NBLST, NBMIN,
 | |
|      $                   NH, NNB, NX, PPW, PPWO, PW, TOP, TOPQ
 | |
|       REAL               C
 | |
|       COMPLEX            C1, C2, CTEMP, S, S1, S2, TEMP, TEMP1, TEMP2,
 | |
|      $                   TEMP3
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV, LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGGHRD, CLARTG, CLASET, CUNM22, CROT, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          REAL, CMPLX, CONJG, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       NB = ILAENV( 1, 'CGGHD3', ' ', N, ILO, IHI, -1 )
 | |
|       LWKOPT = 6*N*NB
 | |
|       WORK( 1 ) = CMPLX( LWKOPT )
 | |
|       INITQ = LSAME( COMPQ, 'I' )
 | |
|       WANTQ = INITQ .OR. LSAME( COMPQ, 'V' )
 | |
|       INITZ = LSAME( COMPZ, 'I' )
 | |
|       WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
|       IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( ILO.LT.1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( ( WANTQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( ( WANTZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -15
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGGHD3', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize Q and Z if desired.
 | |
| *
 | |
|       IF( INITQ )
 | |
|      $   CALL CLASET( 'All', N, N, CZERO, CONE, Q, LDQ )
 | |
|       IF( INITZ )
 | |
|      $   CALL CLASET( 'All', N, N, CZERO, CONE, Z, LDZ )
 | |
| *
 | |
| *     Zero out lower triangle of B.
 | |
| *
 | |
|       IF( N.GT.1 )
 | |
|      $   CALL CLASET( 'Lower', N-1, N-1, CZERO, CZERO, B(2, 1), LDB )
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       NH = IHI - ILO + 1
 | |
|       IF( NH.LE.1 ) THEN
 | |
|          WORK( 1 ) = CONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Determine the blocksize.
 | |
| *
 | |
|       NBMIN = ILAENV( 2, 'CGGHD3', ' ', N, ILO, IHI, -1 )
 | |
|       IF( NB.GT.1 .AND. NB.LT.NH ) THEN
 | |
| *
 | |
| *        Determine when to use unblocked instead of blocked code.
 | |
| *
 | |
|          NX = MAX( NB, ILAENV( 3, 'CGGHD3', ' ', N, ILO, IHI, -1 ) )
 | |
|          IF( NX.LT.NH ) THEN
 | |
| *
 | |
| *           Determine if workspace is large enough for blocked code.
 | |
| *
 | |
|             IF( LWORK.LT.LWKOPT ) THEN
 | |
| *
 | |
| *              Not enough workspace to use optimal NB:  determine the
 | |
| *              minimum value of NB, and reduce NB or force use of
 | |
| *              unblocked code.
 | |
| *
 | |
|                NBMIN = MAX( 2, ILAENV( 2, 'CGGHD3', ' ', N, ILO, IHI,
 | |
|      $                      -1 ) )
 | |
|                IF( LWORK.GE.6*N*NBMIN ) THEN
 | |
|                   NB = LWORK / ( 6*N )
 | |
|                ELSE
 | |
|                   NB = 1
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
 | |
| *
 | |
| *        Use unblocked code below
 | |
| *
 | |
|          JCOL = ILO
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Use blocked code
 | |
| *
 | |
|          KACC22 = ILAENV( 16, 'CGGHD3', ' ', N, ILO, IHI, -1 )
 | |
|          BLK22 = KACC22.EQ.2
 | |
|          DO JCOL = ILO, IHI-2, NB
 | |
|             NNB = MIN( NB, IHI-JCOL-1 )
 | |
| *
 | |
| *           Initialize small unitary factors that will hold the
 | |
| *           accumulated Givens rotations in workspace.
 | |
| *           N2NB   denotes the number of 2*NNB-by-2*NNB factors
 | |
| *           NBLST  denotes the (possibly smaller) order of the last
 | |
| *                  factor.
 | |
| *
 | |
|             N2NB = ( IHI-JCOL-1 ) / NNB - 1
 | |
|             NBLST = IHI - JCOL - N2NB*NNB
 | |
|             CALL CLASET( 'All', NBLST, NBLST, CZERO, CONE, WORK, NBLST )
 | |
|             PW = NBLST * NBLST + 1
 | |
|             DO I = 1, N2NB
 | |
|                CALL CLASET( 'All', 2*NNB, 2*NNB, CZERO, CONE,
 | |
|      $                      WORK( PW ), 2*NNB )
 | |
|                PW = PW + 4*NNB*NNB
 | |
|             END DO
 | |
| *
 | |
| *           Reduce columns JCOL:JCOL+NNB-1 of A to Hessenberg form.
 | |
| *
 | |
|             DO J = JCOL, JCOL+NNB-1
 | |
| *
 | |
| *              Reduce Jth column of A. Store cosines and sines in Jth
 | |
| *              column of A and B, respectively.
 | |
| *
 | |
|                DO I = IHI, J+2, -1
 | |
|                   TEMP = A( I-1, J )
 | |
|                   CALL CLARTG( TEMP, A( I, J ), C, S, A( I-1, J ) )
 | |
|                   A( I, J ) = CMPLX( C )
 | |
|                   B( I, J ) = S
 | |
|                END DO
 | |
| *
 | |
| *              Accumulate Givens rotations into workspace array.
 | |
| *
 | |
|                PPW  = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
 | |
|                LEN  = 2 + J - JCOL
 | |
|                JROW = J + N2NB*NNB + 2
 | |
|                DO I = IHI, JROW, -1
 | |
|                   CTEMP = A( I, J )
 | |
|                   S = B( I, J )
 | |
|                   DO JJ = PPW, PPW+LEN-1
 | |
|                      TEMP = WORK( JJ + NBLST )
 | |
|                      WORK( JJ + NBLST ) = CTEMP*TEMP - S*WORK( JJ )
 | |
|                      WORK( JJ ) = CONJG( S )*TEMP + CTEMP*WORK( JJ )
 | |
|                   END DO
 | |
|                   LEN = LEN + 1
 | |
|                   PPW = PPW - NBLST - 1
 | |
|                END DO
 | |
| *
 | |
|                PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
 | |
|                J0 = JROW - NNB
 | |
|                DO JROW = J0, J+2, -NNB
 | |
|                   PPW = PPWO
 | |
|                   LEN  = 2 + J - JCOL
 | |
|                   DO I = JROW+NNB-1, JROW, -1
 | |
|                      CTEMP = A( I, J )
 | |
|                      S = B( I, J )
 | |
|                      DO JJ = PPW, PPW+LEN-1
 | |
|                         TEMP = WORK( JJ + 2*NNB )
 | |
|                         WORK( JJ + 2*NNB ) = CTEMP*TEMP - S*WORK( JJ )
 | |
|                         WORK( JJ ) = CONJG( S )*TEMP + CTEMP*WORK( JJ )
 | |
|                      END DO
 | |
|                      LEN = LEN + 1
 | |
|                      PPW = PPW - 2*NNB - 1
 | |
|                   END DO
 | |
|                   PPWO = PPWO + 4*NNB*NNB
 | |
|                END DO
 | |
| *
 | |
| *              TOP denotes the number of top rows in A and B that will
 | |
| *              not be updated during the next steps.
 | |
| *
 | |
|                IF( JCOL.LE.2 ) THEN
 | |
|                   TOP = 0
 | |
|                ELSE
 | |
|                   TOP = JCOL
 | |
|                END IF
 | |
| *
 | |
| *              Propagate transformations through B and replace stored
 | |
| *              left sines/cosines by right sines/cosines.
 | |
| *
 | |
|                DO JJ = N, J+1, -1
 | |
| *
 | |
| *                 Update JJth column of B.
 | |
| *
 | |
|                   DO I = MIN( JJ+1, IHI ), J+2, -1
 | |
|                      CTEMP = A( I, J )
 | |
|                      S = B( I, J )
 | |
|                      TEMP = B( I, JJ )
 | |
|                      B( I, JJ ) = CTEMP*TEMP - CONJG( S )*B( I-1, JJ )
 | |
|                      B( I-1, JJ ) = S*TEMP + CTEMP*B( I-1, JJ )
 | |
|                   END DO
 | |
| *
 | |
| *                 Annihilate B( JJ+1, JJ ).
 | |
| *
 | |
|                   IF( JJ.LT.IHI ) THEN
 | |
|                      TEMP = B( JJ+1, JJ+1 )
 | |
|                      CALL CLARTG( TEMP, B( JJ+1, JJ ), C, S,
 | |
|      $                            B( JJ+1, JJ+1 ) )
 | |
|                      B( JJ+1, JJ ) = CZERO
 | |
|                      CALL CROT( JJ-TOP, B( TOP+1, JJ+1 ), 1,
 | |
|      $                          B( TOP+1, JJ ), 1, C, S )
 | |
|                      A( JJ+1, J ) = CMPLX( C )
 | |
|                      B( JJ+1, J ) = -CONJG( S )
 | |
|                   END IF
 | |
|                END DO
 | |
| *
 | |
| *              Update A by transformations from right.
 | |
| *
 | |
|                JJ = MOD( IHI-J-1, 3 )
 | |
|                DO I = IHI-J-3, JJ+1, -3
 | |
|                   CTEMP = A( J+1+I, J )
 | |
|                   S = -B( J+1+I, J )
 | |
|                   C1 = A( J+2+I, J )
 | |
|                   S1 = -B( J+2+I, J )
 | |
|                   C2 = A( J+3+I, J )
 | |
|                   S2 = -B( J+3+I, J )
 | |
| *
 | |
|                   DO K = TOP+1, IHI
 | |
|                      TEMP = A( K, J+I  )
 | |
|                      TEMP1 = A( K, J+I+1 )
 | |
|                      TEMP2 = A( K, J+I+2 )
 | |
|                      TEMP3 = A( K, J+I+3 )
 | |
|                      A( K, J+I+3 ) = C2*TEMP3 + CONJG( S2 )*TEMP2
 | |
|                      TEMP2 = -S2*TEMP3 + C2*TEMP2
 | |
|                      A( K, J+I+2 ) = C1*TEMP2 + CONJG( S1 )*TEMP1
 | |
|                      TEMP1 = -S1*TEMP2 + C1*TEMP1
 | |
|                      A( K, J+I+1 ) = CTEMP*TEMP1 + CONJG( S )*TEMP
 | |
|                      A( K, J+I ) = -S*TEMP1 + CTEMP*TEMP
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|                IF( JJ.GT.0 ) THEN
 | |
|                   DO I = JJ, 1, -1
 | |
|                      C = DBLE( A( J+1+I, J ) )
 | |
|                      CALL CROT( IHI-TOP, A( TOP+1, J+I+1 ), 1,
 | |
|      $                          A( TOP+1, J+I ), 1, C,
 | |
|      $                          -CONJG( B( J+1+I, J ) ) )
 | |
|                   END DO
 | |
|                END IF
 | |
| *
 | |
| *              Update (J+1)th column of A by transformations from left.
 | |
| *
 | |
|                IF ( J .LT. JCOL + NNB - 1 ) THEN
 | |
|                   LEN  = 1 + J - JCOL
 | |
| *
 | |
| *                 Multiply with the trailing accumulated unitary
 | |
| *                 matrix, which takes the form
 | |
| *
 | |
| *                        [  U11  U12  ]
 | |
| *                    U = [            ],
 | |
| *                        [  U21  U22  ]
 | |
| *
 | |
| *                 where U21 is a LEN-by-LEN matrix and U12 is lower
 | |
| *                 triangular.
 | |
| *
 | |
|                   JROW = IHI - NBLST + 1
 | |
|                   CALL CGEMV( 'Conjugate', NBLST, LEN, CONE, WORK,
 | |
|      $                        NBLST, A( JROW, J+1 ), 1, CZERO,
 | |
|      $                        WORK( PW ), 1 )
 | |
|                   PPW = PW + LEN
 | |
|                   DO I = JROW, JROW+NBLST-LEN-1
 | |
|                      WORK( PPW ) = A( I, J+1 )
 | |
|                      PPW = PPW + 1
 | |
|                   END DO
 | |
|                   CALL CTRMV( 'Lower', 'Conjugate', 'Non-unit',
 | |
|      $                        NBLST-LEN, WORK( LEN*NBLST + 1 ), NBLST,
 | |
|      $                        WORK( PW+LEN ), 1 )
 | |
|                   CALL CGEMV( 'Conjugate', LEN, NBLST-LEN, CONE,
 | |
|      $                        WORK( (LEN+1)*NBLST - LEN + 1 ), NBLST,
 | |
|      $                        A( JROW+NBLST-LEN, J+1 ), 1, CONE,
 | |
|      $                        WORK( PW+LEN ), 1 )
 | |
|                   PPW = PW
 | |
|                   DO I = JROW, JROW+NBLST-1
 | |
|                      A( I, J+1 ) = WORK( PPW )
 | |
|                      PPW = PPW + 1
 | |
|                   END DO
 | |
| *
 | |
| *                 Multiply with the other accumulated unitary
 | |
| *                 matrices, which take the form
 | |
| *
 | |
| *                        [  U11  U12   0  ]
 | |
| *                        [                ]
 | |
| *                    U = [  U21  U22   0  ],
 | |
| *                        [                ]
 | |
| *                        [   0    0    I  ]
 | |
| *
 | |
| *                 where I denotes the (NNB-LEN)-by-(NNB-LEN) identity
 | |
| *                 matrix, U21 is a LEN-by-LEN upper triangular matrix
 | |
| *                 and U12 is an NNB-by-NNB lower triangular matrix.
 | |
| *
 | |
|                   PPWO = 1 + NBLST*NBLST
 | |
|                   J0 = JROW - NNB
 | |
|                   DO JROW = J0, JCOL+1, -NNB
 | |
|                      PPW = PW + LEN
 | |
|                      DO I = JROW, JROW+NNB-1
 | |
|                         WORK( PPW ) = A( I, J+1 )
 | |
|                         PPW = PPW + 1
 | |
|                      END DO
 | |
|                      PPW = PW
 | |
|                      DO I = JROW+NNB, JROW+NNB+LEN-1
 | |
|                         WORK( PPW ) = A( I, J+1 )
 | |
|                         PPW = PPW + 1
 | |
|                      END DO
 | |
|                      CALL CTRMV( 'Upper', 'Conjugate', 'Non-unit', LEN,
 | |
|      $                           WORK( PPWO + NNB ), 2*NNB, WORK( PW ),
 | |
|      $                           1 )
 | |
|                      CALL CTRMV( 'Lower', 'Conjugate', 'Non-unit', NNB,
 | |
|      $                           WORK( PPWO + 2*LEN*NNB ),
 | |
|      $                           2*NNB, WORK( PW + LEN ), 1 )
 | |
|                      CALL CGEMV( 'Conjugate', NNB, LEN, CONE,
 | |
|      $                           WORK( PPWO ), 2*NNB, A( JROW, J+1 ), 1,
 | |
|      $                           CONE, WORK( PW ), 1 )
 | |
|                      CALL CGEMV( 'Conjugate', LEN, NNB, CONE,
 | |
|      $                           WORK( PPWO + 2*LEN*NNB + NNB ), 2*NNB,
 | |
|      $                           A( JROW+NNB, J+1 ), 1, CONE,
 | |
|      $                           WORK( PW+LEN ), 1 )
 | |
|                      PPW = PW
 | |
|                      DO I = JROW, JROW+LEN+NNB-1
 | |
|                         A( I, J+1 ) = WORK( PPW )
 | |
|                         PPW = PPW + 1
 | |
|                      END DO
 | |
|                      PPWO = PPWO + 4*NNB*NNB
 | |
|                   END DO
 | |
|                END IF
 | |
|             END DO
 | |
| *
 | |
| *           Apply accumulated unitary matrices to A.
 | |
| *
 | |
|             COLA = N - JCOL - NNB + 1
 | |
|             J = IHI - NBLST + 1
 | |
|             CALL CGEMM( 'Conjugate', 'No Transpose', NBLST,
 | |
|      $                  COLA, NBLST, CONE, WORK, NBLST,
 | |
|      $                  A( J, JCOL+NNB ), LDA, CZERO, WORK( PW ),
 | |
|      $                  NBLST )
 | |
|             CALL CLACPY( 'All', NBLST, COLA, WORK( PW ), NBLST,
 | |
|      $                   A( J, JCOL+NNB ), LDA )
 | |
|             PPWO = NBLST*NBLST + 1
 | |
|             J0 = J - NNB
 | |
|             DO J = J0, JCOL+1, -NNB
 | |
|                IF ( BLK22 ) THEN
 | |
| *
 | |
| *                 Exploit the structure of
 | |
| *
 | |
| *                        [  U11  U12  ]
 | |
| *                    U = [            ]
 | |
| *                        [  U21  U22  ],
 | |
| *
 | |
| *                 where all blocks are NNB-by-NNB, U21 is upper
 | |
| *                 triangular and U12 is lower triangular.
 | |
| *
 | |
|                   CALL CUNM22( 'Left', 'Conjugate', 2*NNB, COLA, NNB,
 | |
|      $                         NNB, WORK( PPWO ), 2*NNB,
 | |
|      $                         A( J, JCOL+NNB ), LDA, WORK( PW ),
 | |
|      $                         LWORK-PW+1, IERR )
 | |
|                ELSE
 | |
| *
 | |
| *                 Ignore the structure of U.
 | |
| *
 | |
|                   CALL CGEMM( 'Conjugate', 'No Transpose', 2*NNB,
 | |
|      $                        COLA, 2*NNB, CONE, WORK( PPWO ), 2*NNB,
 | |
|      $                        A( J, JCOL+NNB ), LDA, CZERO, WORK( PW ),
 | |
|      $                        2*NNB )
 | |
|                   CALL CLACPY( 'All', 2*NNB, COLA, WORK( PW ), 2*NNB,
 | |
|      $                         A( J, JCOL+NNB ), LDA )
 | |
|                END IF
 | |
|                PPWO = PPWO + 4*NNB*NNB
 | |
|             END DO
 | |
| *
 | |
| *           Apply accumulated unitary matrices to Q.
 | |
| *
 | |
|             IF( WANTQ ) THEN
 | |
|                J = IHI - NBLST + 1
 | |
|                IF ( INITQ ) THEN
 | |
|                   TOPQ = MAX( 2, J - JCOL + 1 )
 | |
|                   NH  = IHI - TOPQ + 1
 | |
|                ELSE
 | |
|                   TOPQ = 1
 | |
|                   NH = N
 | |
|                END IF
 | |
|                CALL CGEMM( 'No Transpose', 'No Transpose', NH,
 | |
|      $                     NBLST, NBLST, CONE, Q( TOPQ, J ), LDQ,
 | |
|      $                     WORK, NBLST, CZERO, WORK( PW ), NH )
 | |
|                CALL CLACPY( 'All', NH, NBLST, WORK( PW ), NH,
 | |
|      $                      Q( TOPQ, J ), LDQ )
 | |
|                PPWO = NBLST*NBLST + 1
 | |
|                J0 = J - NNB
 | |
|                DO J = J0, JCOL+1, -NNB
 | |
|                   IF ( INITQ ) THEN
 | |
|                      TOPQ = MAX( 2, J - JCOL + 1 )
 | |
|                      NH  = IHI - TOPQ + 1
 | |
|                   END IF
 | |
|                   IF ( BLK22 ) THEN
 | |
| *
 | |
| *                    Exploit the structure of U.
 | |
| *
 | |
|                      CALL CUNM22( 'Right', 'No Transpose', NH, 2*NNB,
 | |
|      $                            NNB, NNB, WORK( PPWO ), 2*NNB,
 | |
|      $                            Q( TOPQ, J ), LDQ, WORK( PW ),
 | |
|      $                            LWORK-PW+1, IERR )
 | |
|                   ELSE
 | |
| *
 | |
| *                    Ignore the structure of U.
 | |
| *
 | |
|                      CALL CGEMM( 'No Transpose', 'No Transpose', NH,
 | |
|      $                           2*NNB, 2*NNB, CONE, Q( TOPQ, J ), LDQ,
 | |
|      $                           WORK( PPWO ), 2*NNB, CZERO, WORK( PW ),
 | |
|      $                           NH )
 | |
|                      CALL CLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
 | |
|      $                            Q( TOPQ, J ), LDQ )
 | |
|                   END IF
 | |
|                   PPWO = PPWO + 4*NNB*NNB
 | |
|                END DO
 | |
|             END IF
 | |
| *
 | |
| *           Accumulate right Givens rotations if required.
 | |
| *
 | |
|             IF ( WANTZ .OR. TOP.GT.0 ) THEN
 | |
| *
 | |
| *              Initialize small unitary factors that will hold the
 | |
| *              accumulated Givens rotations in workspace.
 | |
| *
 | |
|                CALL CLASET( 'All', NBLST, NBLST, CZERO, CONE, WORK,
 | |
|      $                      NBLST )
 | |
|                PW = NBLST * NBLST + 1
 | |
|                DO I = 1, N2NB
 | |
|                   CALL CLASET( 'All', 2*NNB, 2*NNB, CZERO, CONE,
 | |
|      $                         WORK( PW ), 2*NNB )
 | |
|                   PW = PW + 4*NNB*NNB
 | |
|                END DO
 | |
| *
 | |
| *              Accumulate Givens rotations into workspace array.
 | |
| *
 | |
|                DO J = JCOL, JCOL+NNB-1
 | |
|                   PPW  = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
 | |
|                   LEN  = 2 + J - JCOL
 | |
|                   JROW = J + N2NB*NNB + 2
 | |
|                   DO I = IHI, JROW, -1
 | |
|                      CTEMP = A( I, J )
 | |
|                      A( I, J ) = CZERO
 | |
|                      S = B( I, J )
 | |
|                      B( I, J ) = CZERO
 | |
|                      DO JJ = PPW, PPW+LEN-1
 | |
|                         TEMP = WORK( JJ + NBLST )
 | |
|                         WORK( JJ + NBLST ) = CTEMP*TEMP -
 | |
|      $                                       CONJG( S )*WORK( JJ )
 | |
|                         WORK( JJ ) = S*TEMP + CTEMP*WORK( JJ )
 | |
|                      END DO
 | |
|                      LEN = LEN + 1
 | |
|                      PPW = PPW - NBLST - 1
 | |
|                   END DO
 | |
| *
 | |
|                   PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
 | |
|                   J0 = JROW - NNB
 | |
|                   DO JROW = J0, J+2, -NNB
 | |
|                      PPW = PPWO
 | |
|                      LEN  = 2 + J - JCOL
 | |
|                      DO I = JROW+NNB-1, JROW, -1
 | |
|                         CTEMP = A( I, J )
 | |
|                         A( I, J ) = CZERO
 | |
|                         S = B( I, J )
 | |
|                         B( I, J ) = CZERO
 | |
|                         DO JJ = PPW, PPW+LEN-1
 | |
|                            TEMP = WORK( JJ + 2*NNB )
 | |
|                            WORK( JJ + 2*NNB ) = CTEMP*TEMP -
 | |
|      $                                          CONJG( S )*WORK( JJ )
 | |
|                            WORK( JJ ) = S*TEMP + CTEMP*WORK( JJ )
 | |
|                         END DO
 | |
|                         LEN = LEN + 1
 | |
|                         PPW = PPW - 2*NNB - 1
 | |
|                      END DO
 | |
|                      PPWO = PPWO + 4*NNB*NNB
 | |
|                   END DO
 | |
|                END DO
 | |
|             ELSE
 | |
| *
 | |
|                CALL CLASET( 'Lower', IHI - JCOL - 1, NNB, CZERO, CZERO,
 | |
|      $                      A( JCOL + 2, JCOL ), LDA )
 | |
|                CALL CLASET( 'Lower', IHI - JCOL - 1, NNB, CZERO, CZERO,
 | |
|      $                      B( JCOL + 2, JCOL ), LDB )
 | |
|             END IF
 | |
| *
 | |
| *           Apply accumulated unitary matrices to A and B.
 | |
| *
 | |
|             IF ( TOP.GT.0 ) THEN
 | |
|                J = IHI - NBLST + 1
 | |
|                CALL CGEMM( 'No Transpose', 'No Transpose', TOP,
 | |
|      $                     NBLST, NBLST, CONE, A( 1, J ), LDA,
 | |
|      $                     WORK, NBLST, CZERO, WORK( PW ), TOP )
 | |
|                CALL CLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
 | |
|      $                      A( 1, J ), LDA )
 | |
|                PPWO = NBLST*NBLST + 1
 | |
|                J0 = J - NNB
 | |
|                DO J = J0, JCOL+1, -NNB
 | |
|                   IF ( BLK22 ) THEN
 | |
| *
 | |
| *                    Exploit the structure of U.
 | |
| *
 | |
|                      CALL CUNM22( 'Right', 'No Transpose', TOP, 2*NNB,
 | |
|      $                            NNB, NNB, WORK( PPWO ), 2*NNB,
 | |
|      $                            A( 1, J ), LDA, WORK( PW ),
 | |
|      $                            LWORK-PW+1, IERR )
 | |
|                   ELSE
 | |
| *
 | |
| *                    Ignore the structure of U.
 | |
| *
 | |
|                      CALL CGEMM( 'No Transpose', 'No Transpose', TOP,
 | |
|      $                           2*NNB, 2*NNB, CONE, A( 1, J ), LDA,
 | |
|      $                           WORK( PPWO ), 2*NNB, CZERO,
 | |
|      $                           WORK( PW ), TOP )
 | |
|                      CALL CLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
 | |
|      $                            A( 1, J ), LDA )
 | |
|                   END IF
 | |
|                   PPWO = PPWO + 4*NNB*NNB
 | |
|                END DO
 | |
| *
 | |
|                J = IHI - NBLST + 1
 | |
|                CALL CGEMM( 'No Transpose', 'No Transpose', TOP,
 | |
|      $                     NBLST, NBLST, CONE, B( 1, J ), LDB,
 | |
|      $                     WORK, NBLST, CZERO, WORK( PW ), TOP )
 | |
|                CALL CLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
 | |
|      $                      B( 1, J ), LDB )
 | |
|                PPWO = NBLST*NBLST + 1
 | |
|                J0 = J - NNB
 | |
|                DO J = J0, JCOL+1, -NNB
 | |
|                   IF ( BLK22 ) THEN
 | |
| *
 | |
| *                    Exploit the structure of U.
 | |
| *
 | |
|                      CALL CUNM22( 'Right', 'No Transpose', TOP, 2*NNB,
 | |
|      $                            NNB, NNB, WORK( PPWO ), 2*NNB,
 | |
|      $                            B( 1, J ), LDB, WORK( PW ),
 | |
|      $                            LWORK-PW+1, IERR )
 | |
|                   ELSE
 | |
| *
 | |
| *                    Ignore the structure of U.
 | |
| *
 | |
|                      CALL CGEMM( 'No Transpose', 'No Transpose', TOP,
 | |
|      $                           2*NNB, 2*NNB, CONE, B( 1, J ), LDB,
 | |
|      $                           WORK( PPWO ), 2*NNB, CZERO,
 | |
|      $                           WORK( PW ), TOP )
 | |
|                      CALL CLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
 | |
|      $                            B( 1, J ), LDB )
 | |
|                   END IF
 | |
|                   PPWO = PPWO + 4*NNB*NNB
 | |
|                END DO
 | |
|             END IF
 | |
| *
 | |
| *           Apply accumulated unitary matrices to Z.
 | |
| *
 | |
|             IF( WANTZ ) THEN
 | |
|                J = IHI - NBLST + 1
 | |
|                IF ( INITQ ) THEN
 | |
|                   TOPQ = MAX( 2, J - JCOL + 1 )
 | |
|                   NH  = IHI - TOPQ + 1
 | |
|                ELSE
 | |
|                   TOPQ = 1
 | |
|                   NH = N
 | |
|                END IF
 | |
|                CALL CGEMM( 'No Transpose', 'No Transpose', NH,
 | |
|      $                     NBLST, NBLST, CONE, Z( TOPQ, J ), LDZ,
 | |
|      $                     WORK, NBLST, CZERO, WORK( PW ), NH )
 | |
|                CALL CLACPY( 'All', NH, NBLST, WORK( PW ), NH,
 | |
|      $                      Z( TOPQ, J ), LDZ )
 | |
|                PPWO = NBLST*NBLST + 1
 | |
|                J0 = J - NNB
 | |
|                DO J = J0, JCOL+1, -NNB
 | |
|                      IF ( INITQ ) THEN
 | |
|                      TOPQ = MAX( 2, J - JCOL + 1 )
 | |
|                      NH  = IHI - TOPQ + 1
 | |
|                   END IF
 | |
|                   IF ( BLK22 ) THEN
 | |
| *
 | |
| *                    Exploit the structure of U.
 | |
| *
 | |
|                      CALL CUNM22( 'Right', 'No Transpose', NH, 2*NNB,
 | |
|      $                            NNB, NNB, WORK( PPWO ), 2*NNB,
 | |
|      $                            Z( TOPQ, J ), LDZ, WORK( PW ),
 | |
|      $                            LWORK-PW+1, IERR )
 | |
|                   ELSE
 | |
| *
 | |
| *                    Ignore the structure of U.
 | |
| *
 | |
|                      CALL CGEMM( 'No Transpose', 'No Transpose', NH,
 | |
|      $                           2*NNB, 2*NNB, CONE, Z( TOPQ, J ), LDZ,
 | |
|      $                           WORK( PPWO ), 2*NNB, CZERO, WORK( PW ),
 | |
|      $                           NH )
 | |
|                      CALL CLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
 | |
|      $                            Z( TOPQ, J ), LDZ )
 | |
|                   END IF
 | |
|                   PPWO = PPWO + 4*NNB*NNB
 | |
|                END DO
 | |
|             END IF
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     Use unblocked code to reduce the rest of the matrix
 | |
| *     Avoid re-initialization of modified Q and Z.
 | |
| *
 | |
|       COMPQ2 = COMPQ
 | |
|       COMPZ2 = COMPZ
 | |
|       IF ( JCOL.NE.ILO ) THEN
 | |
|          IF ( WANTQ )
 | |
|      $      COMPQ2 = 'V'
 | |
|          IF ( WANTZ )
 | |
|      $      COMPZ2 = 'V'
 | |
|       END IF
 | |
| *
 | |
|       IF ( JCOL.LT.IHI )
 | |
|      $   CALL CGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q,
 | |
|      $                LDQ, Z, LDZ, IERR )
 | |
|       WORK( 1 ) = CMPLX( LWKOPT )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGGHD3
 | |
| *
 | |
|       END
 |