600 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			600 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> CGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGGES + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgges.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgges.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgges.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
 | |
| *                         SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
 | |
| *                         LWORK, RWORK, BWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBVSL, JOBVSR, SORT
 | |
| *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            BWORK( * )
 | |
| *       REAL               RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | |
| *      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *       .. Function Arguments ..
 | |
| *       LOGICAL            SELCTG
 | |
| *       EXTERNAL           SELCTG
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGGES computes for a pair of N-by-N complex nonsymmetric matrices
 | |
| *> (A,B), the generalized eigenvalues, the generalized complex Schur
 | |
| *> form (S, T), and optionally left and/or right Schur vectors (VSL
 | |
| *> and VSR). This gives the generalized Schur factorization
 | |
| *>
 | |
| *>         (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
 | |
| *>
 | |
| *> where (VSR)**H is the conjugate-transpose of VSR.
 | |
| *>
 | |
| *> Optionally, it also orders the eigenvalues so that a selected cluster
 | |
| *> of eigenvalues appears in the leading diagonal blocks of the upper
 | |
| *> triangular matrix S and the upper triangular matrix T. The leading
 | |
| *> columns of VSL and VSR then form an unitary basis for the
 | |
| *> corresponding left and right eigenspaces (deflating subspaces).
 | |
| *>
 | |
| *> (If only the generalized eigenvalues are needed, use the driver
 | |
| *> CGGEV instead, which is faster.)
 | |
| *>
 | |
| *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
 | |
| *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
 | |
| *> usually represented as the pair (alpha,beta), as there is a
 | |
| *> reasonable interpretation for beta=0, and even for both being zero.
 | |
| *>
 | |
| *> A pair of matrices (S,T) is in generalized complex Schur form if S
 | |
| *> and T are upper triangular and, in addition, the diagonal elements
 | |
| *> of T are non-negative real numbers.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBVSL
 | |
| *> \verbatim
 | |
| *>          JOBVSL is CHARACTER*1
 | |
| *>          = 'N':  do not compute the left Schur vectors;
 | |
| *>          = 'V':  compute the left Schur vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBVSR
 | |
| *> \verbatim
 | |
| *>          JOBVSR is CHARACTER*1
 | |
| *>          = 'N':  do not compute the right Schur vectors;
 | |
| *>          = 'V':  compute the right Schur vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SORT
 | |
| *> \verbatim
 | |
| *>          SORT is CHARACTER*1
 | |
| *>          Specifies whether or not to order the eigenvalues on the
 | |
| *>          diagonal of the generalized Schur form.
 | |
| *>          = 'N':  Eigenvalues are not ordered;
 | |
| *>          = 'S':  Eigenvalues are ordered (see SELCTG).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SELCTG
 | |
| *> \verbatim
 | |
| *>          SELCTG is a LOGICAL FUNCTION of two COMPLEX arguments
 | |
| *>          SELCTG must be declared EXTERNAL in the calling subroutine.
 | |
| *>          If SORT = 'N', SELCTG is not referenced.
 | |
| *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
 | |
| *>          to the top left of the Schur form.
 | |
| *>          An eigenvalue ALPHA(j)/BETA(j) is selected if
 | |
| *>          SELCTG(ALPHA(j),BETA(j)) is true.
 | |
| *>
 | |
| *>          Note that a selected complex eigenvalue may no longer satisfy
 | |
| *>          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
 | |
| *>          ordering may change the value of complex eigenvalues
 | |
| *>          (especially if the eigenvalue is ill-conditioned), in this
 | |
| *>          case INFO is set to N+2 (See INFO below).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA, N)
 | |
| *>          On entry, the first of the pair of matrices.
 | |
| *>          On exit, A has been overwritten by its generalized Schur
 | |
| *>          form S.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB, N)
 | |
| *>          On entry, the second of the pair of matrices.
 | |
| *>          On exit, B has been overwritten by its generalized Schur
 | |
| *>          form T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SDIM
 | |
| *> \verbatim
 | |
| *>          SDIM is INTEGER
 | |
| *>          If SORT = 'N', SDIM = 0.
 | |
| *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
 | |
| *>          for which SELCTG is true.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is COMPLEX array, dimension (N)
 | |
| *>          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
 | |
| *>          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
 | |
| *>          j=1,...,N  are the diagonals of the complex Schur form (A,B)
 | |
| *>          output by CGGES. The  BETA(j) will be non-negative real.
 | |
| *>
 | |
| *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
 | |
| *>          underflow, and BETA(j) may even be zero.  Thus, the user
 | |
| *>          should avoid naively computing the ratio alpha/beta.
 | |
| *>          However, ALPHA will be always less than and usually
 | |
| *>          comparable with norm(A) in magnitude, and BETA always less
 | |
| *>          than and usually comparable with norm(B).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VSL
 | |
| *> \verbatim
 | |
| *>          VSL is COMPLEX array, dimension (LDVSL,N)
 | |
| *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
 | |
| *>          Not referenced if JOBVSL = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVSL
 | |
| *> \verbatim
 | |
| *>          LDVSL is INTEGER
 | |
| *>          The leading dimension of the matrix VSL. LDVSL >= 1, and
 | |
| *>          if JOBVSL = 'V', LDVSL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VSR
 | |
| *> \verbatim
 | |
| *>          VSR is COMPLEX array, dimension (LDVSR,N)
 | |
| *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
 | |
| *>          Not referenced if JOBVSR = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVSR
 | |
| *> \verbatim
 | |
| *>          LDVSR is INTEGER
 | |
| *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
 | |
| *>          if JOBVSR = 'V', LDVSR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
 | |
| *>          For good performance, LWORK must generally be larger.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (8*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BWORK
 | |
| *> \verbatim
 | |
| *>          BWORK is LOGICAL array, dimension (N)
 | |
| *>          Not referenced if SORT = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          =1,...,N:
 | |
| *>                The QZ iteration failed.  (A,B) are not in Schur
 | |
| *>                form, but ALPHA(j) and BETA(j) should be correct for
 | |
| *>                j=INFO+1,...,N.
 | |
| *>          > N:  =N+1: other than QZ iteration failed in CHGEQZ
 | |
| *>                =N+2: after reordering, roundoff changed values of
 | |
| *>                      some complex eigenvalues so that leading
 | |
| *>                      eigenvalues in the Generalized Schur form no
 | |
| *>                      longer satisfy SELCTG=.TRUE.  This could also
 | |
| *>                      be caused due to scaling.
 | |
| *>                =N+3: reordering failed in CTGSEN.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2015
 | |
| *
 | |
| *> \ingroup complexGEeigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
 | |
|      $                  SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
 | |
|      $                  LWORK, RWORK, BWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.6.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2015
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBVSL, JOBVSR, SORT
 | |
|       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            BWORK( * )
 | |
|       REAL               RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | |
|      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *     .. Function Arguments ..
 | |
|       LOGICAL            SELCTG
 | |
|       EXTERNAL           SELCTG
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ),
 | |
|      $                   CONE = ( 1.0E0, 0.0E0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
 | |
|      $                   LQUERY, WANTST
 | |
|       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
 | |
|      $                   ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKMIN,
 | |
|      $                   LWKOPT
 | |
|       REAL               ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
 | |
|      $                   PVSR, SMLNUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IDUM( 1 )
 | |
|       REAL               DIF( 2 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEQRF, CGGBAK, CGGBAL, CGGHRD, CHGEQZ, CLACPY,
 | |
|      $                   CLASCL, CLASET, CTGSEN, CUNGQR, CUNMQR, SLABAD,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       REAL               CLANGE, SLAMCH
 | |
|       EXTERNAL           LSAME, ILAENV, CLANGE, SLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode the input arguments
 | |
| *
 | |
|       IF( LSAME( JOBVSL, 'N' ) ) THEN
 | |
|          IJOBVL = 1
 | |
|          ILVSL = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
 | |
|          IJOBVL = 2
 | |
|          ILVSL = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVL = -1
 | |
|          ILVSL = .FALSE.
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( JOBVSR, 'N' ) ) THEN
 | |
|          IJOBVR = 1
 | |
|          ILVSR = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
 | |
|          IJOBVR = 2
 | |
|          ILVSR = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVR = -1
 | |
|          ILVSR = .FALSE.
 | |
|       END IF
 | |
| *
 | |
|       WANTST = LSAME( SORT, 'S' )
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( IJOBVL.LE.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( IJOBVR.LE.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
 | |
|          INFO = -16
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *      (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace needed at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       NB refers to the optimal block size for the immediately
 | |
| *       following subroutine, as returned by ILAENV.)
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          LWKMIN = MAX( 1, 2*N )
 | |
|          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'CGEQRF', ' ', N, 1, N, 0 ) )
 | |
|          LWKOPT = MAX( LWKOPT, N +
 | |
|      $                 N*ILAENV( 1, 'CUNMQR', ' ', N, 1, N, -1 ) )
 | |
|          IF( ILVSL ) THEN
 | |
|             LWKOPT = MAX( LWKOPT, N +
 | |
|      $                    N*ILAENV( 1, 'CUNGQR', ' ', N, 1, N, -1 ) )
 | |
|          END IF
 | |
|          WORK( 1 ) = LWKOPT
 | |
| *
 | |
|          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
 | |
|      $      INFO = -18
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGGES ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          SDIM = 0
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SMLNUM = SLAMCH( 'S' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
|       SMLNUM = SQRT( SMLNUM ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = CLANGE( 'M', N, N, A, LDA, RWORK )
 | |
|       ILASCL = .FALSE.
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
|          ANRMTO = SMLNUM
 | |
|          ILASCL = .TRUE.
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
|          ANRMTO = BIGNUM
 | |
|          ILASCL = .TRUE.
 | |
|       END IF
 | |
| *
 | |
|       IF( ILASCL )
 | |
|      $   CALL CLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
 | |
| *
 | |
| *     Scale B if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       BNRM = CLANGE( 'M', N, N, B, LDB, RWORK )
 | |
|       ILBSCL = .FALSE.
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
|          BNRMTO = SMLNUM
 | |
|          ILBSCL = .TRUE.
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
|          BNRMTO = BIGNUM
 | |
|          ILBSCL = .TRUE.
 | |
|       END IF
 | |
| *
 | |
|       IF( ILBSCL )
 | |
|      $   CALL CLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
 | |
| *
 | |
| *     Permute the matrix to make it more nearly triangular
 | |
| *     (Real Workspace: need 6*N)
 | |
| *
 | |
|       ILEFT = 1
 | |
|       IRIGHT = N + 1
 | |
|       IRWRK = IRIGHT + N
 | |
|       CALL CGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
 | |
|      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
 | |
| *
 | |
| *     Reduce B to triangular form (QR decomposition of B)
 | |
| *     (Complex Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       IROWS = IHI + 1 - ILO
 | |
|       ICOLS = N + 1 - ILO
 | |
|       ITAU = 1
 | |
|       IWRK = ITAU + IROWS
 | |
|       CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | |
|      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
 | |
| *
 | |
| *     Apply the orthogonal transformation to matrix A
 | |
| *     (Complex Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       CALL CUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | |
|      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
 | |
|      $             LWORK+1-IWRK, IERR )
 | |
| *
 | |
| *     Initialize VSL
 | |
| *     (Complex Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       IF( ILVSL ) THEN
 | |
|          CALL CLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
 | |
|          IF( IROWS.GT.1 ) THEN
 | |
|             CALL CLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | |
|      $                   VSL( ILO+1, ILO ), LDVSL )
 | |
|          END IF
 | |
|          CALL CUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
 | |
|      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
 | |
|       END IF
 | |
| *
 | |
| *     Initialize VSR
 | |
| *
 | |
|       IF( ILVSR )
 | |
|      $   CALL CLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
 | |
| *
 | |
| *     Reduce to generalized Hessenberg form
 | |
| *     (Workspace: none needed)
 | |
| *
 | |
|       CALL CGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
 | |
|      $             LDVSL, VSR, LDVSR, IERR )
 | |
| *
 | |
|       SDIM = 0
 | |
| *
 | |
| *     Perform QZ algorithm, computing Schur vectors if desired
 | |
| *     (Complex Workspace: need N)
 | |
| *     (Real Workspace: need N)
 | |
| *
 | |
|       IWRK = ITAU
 | |
|       CALL CHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
 | |
|      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
 | |
|      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
 | |
|       IF( IERR.NE.0 ) THEN
 | |
|          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
 | |
|             INFO = IERR
 | |
|          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
 | |
|             INFO = IERR - N
 | |
|          ELSE
 | |
|             INFO = N + 1
 | |
|          END IF
 | |
|          GO TO 30
 | |
|       END IF
 | |
| *
 | |
| *     Sort eigenvalues ALPHA/BETA if desired
 | |
| *     (Workspace: none needed)
 | |
| *
 | |
|       IF( WANTST ) THEN
 | |
| *
 | |
| *        Undo scaling on eigenvalues before selecting
 | |
| *
 | |
|          IF( ILASCL )
 | |
|      $      CALL CLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
 | |
|          IF( ILBSCL )
 | |
|      $      CALL CLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
 | |
| *
 | |
| *        Select eigenvalues
 | |
| *
 | |
|          DO 10 I = 1, N
 | |
|             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
 | |
|    10    CONTINUE
 | |
| *
 | |
|          CALL CTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
 | |
|      $                BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
 | |
|      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
 | |
|          IF( IERR.EQ.1 )
 | |
|      $      INFO = N + 3
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Apply back-permutation to VSL and VSR
 | |
| *     (Workspace: none needed)
 | |
| *
 | |
|       IF( ILVSL )
 | |
|      $   CALL CGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
 | |
|      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
 | |
|       IF( ILVSR )
 | |
|      $   CALL CGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
 | |
|      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
 | |
| *
 | |
| *     Undo scaling
 | |
| *
 | |
|       IF( ILASCL ) THEN
 | |
|          CALL CLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
 | |
|          CALL CLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( ILBSCL ) THEN
 | |
|          CALL CLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
 | |
|          CALL CLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTST ) THEN
 | |
| *
 | |
| *        Check if reordering is correct
 | |
| *
 | |
|          LASTSL = .TRUE.
 | |
|          SDIM = 0
 | |
|          DO 20 I = 1, N
 | |
|             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
 | |
|             IF( CURSL )
 | |
|      $         SDIM = SDIM + 1
 | |
|             IF( CURSL .AND. .NOT.LASTSL )
 | |
|      $         INFO = N + 2
 | |
|             LASTSL = CURSL
 | |
|    20    CONTINUE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|    30 CONTINUE
 | |
| *
 | |
|       WORK( 1 ) = LWKOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGGES
 | |
| *
 | |
|       END
 |