1011 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1011 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \brief \b SLASR applies a sequence of plane rotations to a general rectangular matrix. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLASR + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasr.f
 | |
| "> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasr.f
 | |
| "> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasr.f
 | |
| "> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) */
 | |
| 
 | |
| /*       CHARACTER          DIRECT, PIVOT, SIDE */
 | |
| /*       INTEGER            LDA, M, N */
 | |
| /*       REAL               A( LDA, * ), C( * ), S( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLASR applies a sequence of plane rotations to a real matrix A, */
 | |
| /* > from either the left or the right. */
 | |
| /* > */
 | |
| /* > When SIDE = 'L', the transformation takes the form */
 | |
| /* > */
 | |
| /* >    A := P*A */
 | |
| /* > */
 | |
| /* > and when SIDE = 'R', the transformation takes the form */
 | |
| /* > */
 | |
| /* >    A := A*P**T */
 | |
| /* > */
 | |
| /* > where P is an orthogonal matrix consisting of a sequence of z plane */
 | |
| /* > rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', */
 | |
| /* > and P**T is the transpose of P. */
 | |
| /* > */
 | |
| /* > When DIRECT = 'F' (Forward sequence), then */
 | |
| /* > */
 | |
| /* >    P = P(z-1) * ... * P(2) * P(1) */
 | |
| /* > */
 | |
| /* > and when DIRECT = 'B' (Backward sequence), then */
 | |
| /* > */
 | |
| /* >    P = P(1) * P(2) * ... * P(z-1) */
 | |
| /* > */
 | |
| /* > where P(k) is a plane rotation matrix defined by the 2-by-2 rotation */
 | |
| /* > */
 | |
| /* >    R(k) = (  c(k)  s(k) ) */
 | |
| /* >         = ( -s(k)  c(k) ). */
 | |
| /* > */
 | |
| /* > When PIVOT = 'V' (Variable pivot), the rotation is performed */
 | |
| /* > for the plane (k,k+1), i.e., P(k) has the form */
 | |
| /* > */
 | |
| /* >    P(k) = (  1                                            ) */
 | |
| /* >           (       ...                                     ) */
 | |
| /* >           (              1                                ) */
 | |
| /* >           (                   c(k)  s(k)                  ) */
 | |
| /* >           (                  -s(k)  c(k)                  ) */
 | |
| /* >           (                                1              ) */
 | |
| /* >           (                                     ...       ) */
 | |
| /* >           (                                            1  ) */
 | |
| /* > */
 | |
| /* > where R(k) appears as a rank-2 modification to the identity matrix in */
 | |
| /* > rows and columns k and k+1. */
 | |
| /* > */
 | |
| /* > When PIVOT = 'T' (Top pivot), the rotation is performed for the */
 | |
| /* > plane (1,k+1), so P(k) has the form */
 | |
| /* > */
 | |
| /* >    P(k) = (  c(k)                    s(k)                 ) */
 | |
| /* >           (         1                                     ) */
 | |
| /* >           (              ...                              ) */
 | |
| /* >           (                     1                         ) */
 | |
| /* >           ( -s(k)                    c(k)                 ) */
 | |
| /* >           (                                 1             ) */
 | |
| /* >           (                                      ...      ) */
 | |
| /* >           (                                             1 ) */
 | |
| /* > */
 | |
| /* > where R(k) appears in rows and columns 1 and k+1. */
 | |
| /* > */
 | |
| /* > Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is */
 | |
| /* > performed for the plane (k,z), giving P(k) the form */
 | |
| /* > */
 | |
| /* >    P(k) = ( 1                                             ) */
 | |
| /* >           (      ...                                      ) */
 | |
| /* >           (             1                                 ) */
 | |
| /* >           (                  c(k)                    s(k) ) */
 | |
| /* >           (                         1                     ) */
 | |
| /* >           (                              ...              ) */
 | |
| /* >           (                                     1         ) */
 | |
| /* >           (                 -s(k)                    c(k) ) */
 | |
| /* > */
 | |
| /* > where R(k) appears in rows and columns k and z.  The rotations are */
 | |
| /* > performed without ever forming P(k) explicitly. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] SIDE */
 | |
| /* > \verbatim */
 | |
| /* >          SIDE is CHARACTER*1 */
 | |
| /* >          Specifies whether the plane rotation matrix P is applied to */
 | |
| /* >          A on the left or the right. */
 | |
| /* >          = 'L':  Left, compute A := P*A */
 | |
| /* >          = 'R':  Right, compute A:= A*P**T */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PIVOT */
 | |
| /* > \verbatim */
 | |
| /* >          PIVOT is CHARACTER*1 */
 | |
| /* >          Specifies the plane for which P(k) is a plane rotation */
 | |
| /* >          matrix. */
 | |
| /* >          = 'V':  Variable pivot, the plane (k,k+1) */
 | |
| /* >          = 'T':  Top pivot, the plane (1,k+1) */
 | |
| /* >          = 'B':  Bottom pivot, the plane (k,z) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIRECT */
 | |
| /* > \verbatim */
 | |
| /* >          DIRECT is CHARACTER*1 */
 | |
| /* >          Specifies whether P is a forward or backward sequence of */
 | |
| /* >          plane rotations. */
 | |
| /* >          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1) */
 | |
| /* >          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix A.  If m <= 1, an immediate */
 | |
| /* >          return is effected. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrix A.  If n <= 1, an */
 | |
| /* >          immediate return is effected. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is REAL array, dimension */
 | |
| /* >                  (M-1) if SIDE = 'L' */
 | |
| /* >                  (N-1) if SIDE = 'R' */
 | |
| /* >          The cosines c(k) of the plane rotations. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is REAL array, dimension */
 | |
| /* >                  (M-1) if SIDE = 'L' */
 | |
| /* >                  (N-1) if SIDE = 'R' */
 | |
| /* >          The sines s(k) of the plane rotations.  The 2-by-2 plane */
 | |
| /* >          rotation part of the matrix P(k), R(k), has the form */
 | |
| /* >          R(k) = (  c(k)  s(k) ) */
 | |
| /* >                 ( -s(k)  c(k) ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA,N) */
 | |
| /* >          The M-by-N matrix A.  On exit, A is overwritten by P*A if */
 | |
| /* >          SIDE = 'R' or by A*P**T if SIDE = 'L'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup OTHERauxiliary */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slasr_(char *side, char *pivot, char *direct, integer *m,
 | |
| 	 integer *n, real *c__, real *s, real *a, integer *lda)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer info;
 | |
|     real temp;
 | |
|     integer i__, j;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     real ctemp, stemp;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --c__;
 | |
|     --s;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     info = 0;
 | |
|     if (! (lsame_(side, "L") || lsame_(side, "R"))) {
 | |
| 	info = 1;
 | |
|     } else if (! (lsame_(pivot, "V") || lsame_(pivot, 
 | |
| 	    "T") || lsame_(pivot, "B"))) {
 | |
| 	info = 2;
 | |
|     } else if (! (lsame_(direct, "F") || lsame_(direct, 
 | |
| 	    "B"))) {
 | |
| 	info = 3;
 | |
|     } else if (*m < 0) {
 | |
| 	info = 4;
 | |
|     } else if (*n < 0) {
 | |
| 	info = 5;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	info = 9;
 | |
|     }
 | |
|     if (info != 0) {
 | |
| 	xerbla_("SLASR ", &info, (ftnlen)5);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
|     if (lsame_(side, "L")) {
 | |
| 
 | |
| /*        Form  P * A */
 | |
| 
 | |
| 	if (lsame_(pivot, "V")) {
 | |
| 	    if (lsame_(direct, "F")) {
 | |
| 		i__1 = *m - 1;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    ctemp = c__[j];
 | |
| 		    stemp = s[j];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    temp = a[j + 1 + i__ * a_dim1];
 | |
| 			    a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp * 
 | |
| 				    a[j + i__ * a_dim1];
 | |
| 			    a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j 
 | |
| 				    + i__ * a_dim1];
 | |
| /* L10: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L20: */
 | |
| 		}
 | |
| 	    } else if (lsame_(direct, "B")) {
 | |
| 		for (j = *m - 1; j >= 1; --j) {
 | |
| 		    ctemp = c__[j];
 | |
| 		    stemp = s[j];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__1 = *n;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    temp = a[j + 1 + i__ * a_dim1];
 | |
| 			    a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp * 
 | |
| 				    a[j + i__ * a_dim1];
 | |
| 			    a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j 
 | |
| 				    + i__ * a_dim1];
 | |
| /* L30: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L40: */
 | |
| 		}
 | |
| 	    }
 | |
| 	} else if (lsame_(pivot, "T")) {
 | |
| 	    if (lsame_(direct, "F")) {
 | |
| 		i__1 = *m;
 | |
| 		for (j = 2; j <= i__1; ++j) {
 | |
| 		    ctemp = c__[j - 1];
 | |
| 		    stemp = s[j - 1];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    temp = a[j + i__ * a_dim1];
 | |
| 			    a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
 | |
| 				    i__ * a_dim1 + 1];
 | |
| 			    a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
 | |
| 				    i__ * a_dim1 + 1];
 | |
| /* L50: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L60: */
 | |
| 		}
 | |
| 	    } else if (lsame_(direct, "B")) {
 | |
| 		for (j = *m; j >= 2; --j) {
 | |
| 		    ctemp = c__[j - 1];
 | |
| 		    stemp = s[j - 1];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__1 = *n;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    temp = a[j + i__ * a_dim1];
 | |
| 			    a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
 | |
| 				    i__ * a_dim1 + 1];
 | |
| 			    a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
 | |
| 				    i__ * a_dim1 + 1];
 | |
| /* L70: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L80: */
 | |
| 		}
 | |
| 	    }
 | |
| 	} else if (lsame_(pivot, "B")) {
 | |
| 	    if (lsame_(direct, "F")) {
 | |
| 		i__1 = *m - 1;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    ctemp = c__[j];
 | |
| 		    stemp = s[j];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    temp = a[j + i__ * a_dim1];
 | |
| 			    a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
 | |
| 				     + ctemp * temp;
 | |
| 			    a[*m + i__ * a_dim1] = ctemp * a[*m + i__ * 
 | |
| 				    a_dim1] - stemp * temp;
 | |
| /* L90: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L100: */
 | |
| 		}
 | |
| 	    } else if (lsame_(direct, "B")) {
 | |
| 		for (j = *m - 1; j >= 1; --j) {
 | |
| 		    ctemp = c__[j];
 | |
| 		    stemp = s[j];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__1 = *n;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    temp = a[j + i__ * a_dim1];
 | |
| 			    a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
 | |
| 				     + ctemp * temp;
 | |
| 			    a[*m + i__ * a_dim1] = ctemp * a[*m + i__ * 
 | |
| 				    a_dim1] - stemp * temp;
 | |
| /* L110: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L120: */
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (lsame_(side, "R")) {
 | |
| 
 | |
| /*        Form A * P**T */
 | |
| 
 | |
| 	if (lsame_(pivot, "V")) {
 | |
| 	    if (lsame_(direct, "F")) {
 | |
| 		i__1 = *n - 1;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    ctemp = c__[j];
 | |
| 		    stemp = s[j];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__2 = *m;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    temp = a[i__ + (j + 1) * a_dim1];
 | |
| 			    a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
 | |
| 				     a[i__ + j * a_dim1];
 | |
| 			    a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
 | |
| 				    i__ + j * a_dim1];
 | |
| /* L130: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L140: */
 | |
| 		}
 | |
| 	    } else if (lsame_(direct, "B")) {
 | |
| 		for (j = *n - 1; j >= 1; --j) {
 | |
| 		    ctemp = c__[j];
 | |
| 		    stemp = s[j];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__1 = *m;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    temp = a[i__ + (j + 1) * a_dim1];
 | |
| 			    a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
 | |
| 				     a[i__ + j * a_dim1];
 | |
| 			    a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
 | |
| 				    i__ + j * a_dim1];
 | |
| /* L150: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L160: */
 | |
| 		}
 | |
| 	    }
 | |
| 	} else if (lsame_(pivot, "T")) {
 | |
| 	    if (lsame_(direct, "F")) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 2; j <= i__1; ++j) {
 | |
| 		    ctemp = c__[j - 1];
 | |
| 		    stemp = s[j - 1];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__2 = *m;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    temp = a[i__ + j * a_dim1];
 | |
| 			    a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
 | |
| 				    i__ + a_dim1];
 | |
| 			    a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ + 
 | |
| 				    a_dim1];
 | |
| /* L170: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L180: */
 | |
| 		}
 | |
| 	    } else if (lsame_(direct, "B")) {
 | |
| 		for (j = *n; j >= 2; --j) {
 | |
| 		    ctemp = c__[j - 1];
 | |
| 		    stemp = s[j - 1];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__1 = *m;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    temp = a[i__ + j * a_dim1];
 | |
| 			    a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
 | |
| 				    i__ + a_dim1];
 | |
| 			    a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ + 
 | |
| 				    a_dim1];
 | |
| /* L190: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L200: */
 | |
| 		}
 | |
| 	    }
 | |
| 	} else if (lsame_(pivot, "B")) {
 | |
| 	    if (lsame_(direct, "F")) {
 | |
| 		i__1 = *n - 1;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    ctemp = c__[j];
 | |
| 		    stemp = s[j];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__2 = *m;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    temp = a[i__ + j * a_dim1];
 | |
| 			    a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
 | |
| 				     + ctemp * temp;
 | |
| 			    a[i__ + *n * a_dim1] = ctemp * a[i__ + *n * 
 | |
| 				    a_dim1] - stemp * temp;
 | |
| /* L210: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L220: */
 | |
| 		}
 | |
| 	    } else if (lsame_(direct, "B")) {
 | |
| 		for (j = *n - 1; j >= 1; --j) {
 | |
| 		    ctemp = c__[j];
 | |
| 		    stemp = s[j];
 | |
| 		    if (ctemp != 1.f || stemp != 0.f) {
 | |
| 			i__1 = *m;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    temp = a[i__ + j * a_dim1];
 | |
| 			    a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
 | |
| 				     + ctemp * temp;
 | |
| 			    a[i__ + *n * a_dim1] = ctemp * a[i__ + *n * 
 | |
| 				    a_dim1] - stemp * temp;
 | |
| /* L230: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L240: */
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SLASR */
 | |
| 
 | |
| } /* slasr_ */
 | |
| 
 |