276 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.
 | ||
| *
 | ||
| *  =========== DOCUMENTATION ===========
 | ||
| *
 | ||
| * Online html documentation available at
 | ||
| *            http://www.netlib.org/lapack/explore-html/
 | ||
| *
 | ||
| *> \htmlonly
 | ||
| *> Download SLAGTM + dependencies
 | ||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slagtm.f">
 | ||
| *> [TGZ]</a>
 | ||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slagtm.f">
 | ||
| *> [ZIP]</a>
 | ||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slagtm.f">
 | ||
| *> [TXT]</a>
 | ||
| *> \endhtmlonly
 | ||
| *
 | ||
| *  Definition:
 | ||
| *  ===========
 | ||
| *
 | ||
| *       SUBROUTINE SLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
 | ||
| *                          B, LDB )
 | ||
| *
 | ||
| *       .. Scalar Arguments ..
 | ||
| *       CHARACTER          TRANS
 | ||
| *       INTEGER            LDB, LDX, N, NRHS
 | ||
| *       REAL               ALPHA, BETA
 | ||
| *       ..
 | ||
| *       .. Array Arguments ..
 | ||
| *       REAL               B( LDB, * ), D( * ), DL( * ), DU( * ),
 | ||
| *      $                   X( LDX, * )
 | ||
| *       ..
 | ||
| *
 | ||
| *
 | ||
| *> \par Purpose:
 | ||
| *  =============
 | ||
| *>
 | ||
| *> \verbatim
 | ||
| *>
 | ||
| *> SLAGTM performs a matrix-vector product of the form
 | ||
| *>
 | ||
| *>    B := alpha * A * X + beta * B
 | ||
| *>
 | ||
| *> where A is a tridiagonal matrix of order N, B and X are N by NRHS
 | ||
| *> matrices, and alpha and beta are real scalars, each of which may be
 | ||
| *> 0., 1., or -1.
 | ||
| *> \endverbatim
 | ||
| *
 | ||
| *  Arguments:
 | ||
| *  ==========
 | ||
| *
 | ||
| *> \param[in] TRANS
 | ||
| *> \verbatim
 | ||
| *>          TRANS is CHARACTER*1
 | ||
| *>          Specifies the operation applied to A.
 | ||
| *>          = 'N':  No transpose, B := alpha * A * X + beta * B
 | ||
| *>          = 'T':  Transpose,    B := alpha * A'* X + beta * B
 | ||
| *>          = 'C':  Conjugate transpose = Transpose
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] N
 | ||
| *> \verbatim
 | ||
| *>          N is INTEGER
 | ||
| *>          The order of the matrix A.  N >= 0.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] NRHS
 | ||
| *> \verbatim
 | ||
| *>          NRHS is INTEGER
 | ||
| *>          The number of right hand sides, i.e., the number of columns
 | ||
| *>          of the matrices X and B.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] ALPHA
 | ||
| *> \verbatim
 | ||
| *>          ALPHA is REAL
 | ||
| *>          The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise,
 | ||
| *>          it is assumed to be 0.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] DL
 | ||
| *> \verbatim
 | ||
| *>          DL is REAL array, dimension (N-1)
 | ||
| *>          The (n-1) sub-diagonal elements of T.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] D
 | ||
| *> \verbatim
 | ||
| *>          D is REAL array, dimension (N)
 | ||
| *>          The diagonal elements of T.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] DU
 | ||
| *> \verbatim
 | ||
| *>          DU is REAL array, dimension (N-1)
 | ||
| *>          The (n-1) super-diagonal elements of T.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] X
 | ||
| *> \verbatim
 | ||
| *>          X is REAL array, dimension (LDX,NRHS)
 | ||
| *>          The N by NRHS matrix X.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] LDX
 | ||
| *> \verbatim
 | ||
| *>          LDX is INTEGER
 | ||
| *>          The leading dimension of the array X.  LDX >= max(N,1).
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] BETA
 | ||
| *> \verbatim
 | ||
| *>          BETA is REAL
 | ||
| *>          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
 | ||
| *>          it is assumed to be 1.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in,out] B
 | ||
| *> \verbatim
 | ||
| *>          B is REAL array, dimension (LDB,NRHS)
 | ||
| *>          On entry, the N by NRHS matrix B.
 | ||
| *>          On exit, B is overwritten by the matrix expression
 | ||
| *>          B := alpha * A * X + beta * B.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] LDB
 | ||
| *> \verbatim
 | ||
| *>          LDB is INTEGER
 | ||
| *>          The leading dimension of the array B.  LDB >= max(N,1).
 | ||
| *> \endverbatim
 | ||
| *
 | ||
| *  Authors:
 | ||
| *  ========
 | ||
| *
 | ||
| *> \author Univ. of Tennessee
 | ||
| *> \author Univ. of California Berkeley
 | ||
| *> \author Univ. of Colorado Denver
 | ||
| *> \author NAG Ltd.
 | ||
| *
 | ||
| *> \ingroup realOTHERauxiliary
 | ||
| *
 | ||
| *  =====================================================================
 | ||
|       SUBROUTINE SLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
 | ||
|      $                   B, LDB )
 | ||
| *
 | ||
| *  -- LAPACK auxiliary routine --
 | ||
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | ||
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | ||
| *
 | ||
| *     .. Scalar Arguments ..
 | ||
|       CHARACTER          TRANS
 | ||
|       INTEGER            LDB, LDX, N, NRHS
 | ||
|       REAL               ALPHA, BETA
 | ||
| *     ..
 | ||
| *     .. Array Arguments ..
 | ||
|       REAL               B( LDB, * ), D( * ), DL( * ), DU( * ),
 | ||
|      $                   X( LDX, * )
 | ||
| *     ..
 | ||
| *
 | ||
| *  =====================================================================
 | ||
| *
 | ||
| *     .. Parameters ..
 | ||
|       REAL               ONE, ZERO
 | ||
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | ||
| *     ..
 | ||
| *     .. Local Scalars ..
 | ||
|       INTEGER            I, J
 | ||
| *     ..
 | ||
| *     .. External Functions ..
 | ||
|       LOGICAL            LSAME
 | ||
|       EXTERNAL           LSAME
 | ||
| *     ..
 | ||
| *     .. Executable Statements ..
 | ||
| *
 | ||
|       IF( N.EQ.0 )
 | ||
|      $   RETURN
 | ||
| *
 | ||
| *     Multiply B by BETA if BETA.NE.1.
 | ||
| *
 | ||
|       IF( BETA.EQ.ZERO ) THEN
 | ||
|          DO 20 J = 1, NRHS
 | ||
|             DO 10 I = 1, N
 | ||
|                B( I, J ) = ZERO
 | ||
|    10       CONTINUE
 | ||
|    20    CONTINUE
 | ||
|       ELSE IF( BETA.EQ.-ONE ) THEN
 | ||
|          DO 40 J = 1, NRHS
 | ||
|             DO 30 I = 1, N
 | ||
|                B( I, J ) = -B( I, J )
 | ||
|    30       CONTINUE
 | ||
|    40    CONTINUE
 | ||
|       END IF
 | ||
| *
 | ||
|       IF( ALPHA.EQ.ONE ) THEN
 | ||
|          IF( LSAME( TRANS, 'N' ) ) THEN
 | ||
| *
 | ||
| *           Compute B := B + A*X
 | ||
| *
 | ||
|             DO 60 J = 1, NRHS
 | ||
|                IF( N.EQ.1 ) THEN
 | ||
|                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
 | ||
|                ELSE
 | ||
|                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
 | ||
|      $                        DU( 1 )*X( 2, J )
 | ||
|                   B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) +
 | ||
|      $                        D( N )*X( N, J )
 | ||
|                   DO 50 I = 2, N - 1
 | ||
|                      B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) +
 | ||
|      $                           D( I )*X( I, J ) + DU( I )*X( I+1, J )
 | ||
|    50             CONTINUE
 | ||
|                END IF
 | ||
|    60       CONTINUE
 | ||
|          ELSE
 | ||
| *
 | ||
| *           Compute B := B + A**T*X
 | ||
| *
 | ||
|             DO 80 J = 1, NRHS
 | ||
|                IF( N.EQ.1 ) THEN
 | ||
|                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
 | ||
|                ELSE
 | ||
|                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
 | ||
|      $                        DL( 1 )*X( 2, J )
 | ||
|                   B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) +
 | ||
|      $                        D( N )*X( N, J )
 | ||
|                   DO 70 I = 2, N - 1
 | ||
|                      B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) +
 | ||
|      $                           D( I )*X( I, J ) + DL( I )*X( I+1, J )
 | ||
|    70             CONTINUE
 | ||
|                END IF
 | ||
|    80       CONTINUE
 | ||
|          END IF
 | ||
|       ELSE IF( ALPHA.EQ.-ONE ) THEN
 | ||
|          IF( LSAME( TRANS, 'N' ) ) THEN
 | ||
| *
 | ||
| *           Compute B := B - A*X
 | ||
| *
 | ||
|             DO 100 J = 1, NRHS
 | ||
|                IF( N.EQ.1 ) THEN
 | ||
|                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
 | ||
|                ELSE
 | ||
|                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
 | ||
|      $                        DU( 1 )*X( 2, J )
 | ||
|                   B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) -
 | ||
|      $                        D( N )*X( N, J )
 | ||
|                   DO 90 I = 2, N - 1
 | ||
|                      B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) -
 | ||
|      $                           D( I )*X( I, J ) - DU( I )*X( I+1, J )
 | ||
|    90             CONTINUE
 | ||
|                END IF
 | ||
|   100       CONTINUE
 | ||
|          ELSE
 | ||
| *
 | ||
| *           Compute B := B - A**T*X
 | ||
| *
 | ||
|             DO 120 J = 1, NRHS
 | ||
|                IF( N.EQ.1 ) THEN
 | ||
|                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
 | ||
|                ELSE
 | ||
|                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
 | ||
|      $                        DL( 1 )*X( 2, J )
 | ||
|                   B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) -
 | ||
|      $                        D( N )*X( N, J )
 | ||
|                   DO 110 I = 2, N - 1
 | ||
|                      B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) -
 | ||
|      $                           D( I )*X( I, J ) - DL( I )*X( I+1, J )
 | ||
|   110             CONTINUE
 | ||
|                END IF
 | ||
|   120       CONTINUE
 | ||
|          END IF
 | ||
|       END IF
 | ||
|       RETURN
 | ||
| *
 | ||
| *     End of SLAGTM
 | ||
| *
 | ||
|       END
 |