574 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			574 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CSTEQR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CSTEQR + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csteqr.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csteqr.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csteqr.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          COMPZ
 | |
| *       INTEGER            INFO, LDZ, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               D( * ), E( * ), WORK( * )
 | |
| *       COMPLEX            Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CSTEQR computes all eigenvalues and, optionally, eigenvectors of a
 | |
| *> symmetric tridiagonal matrix using the implicit QL or QR method.
 | |
| *> The eigenvectors of a full or band complex Hermitian matrix can also
 | |
| *> be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this
 | |
| *> matrix to tridiagonal form.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] COMPZ
 | |
| *> \verbatim
 | |
| *>          COMPZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only.
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors of the original
 | |
| *>                  Hermitian matrix.  On entry, Z must contain the
 | |
| *>                  unitary matrix used to reduce the original matrix
 | |
| *>                  to tridiagonal form.
 | |
| *>          = 'I':  Compute eigenvalues and eigenvectors of the
 | |
| *>                  tridiagonal matrix.  Z is initialized to the identity
 | |
| *>                  matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          On entry, the diagonal elements of the tridiagonal matrix.
 | |
| *>          On exit, if INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
 | |
| *>          matrix.
 | |
| *>          On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDZ, N)
 | |
| *>          On entry, if  COMPZ = 'V', then Z contains the unitary
 | |
| *>          matrix used in the reduction to tridiagonal form.
 | |
| *>          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
 | |
| *>          orthonormal eigenvectors of the original Hermitian matrix,
 | |
| *>          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
 | |
| *>          of the symmetric tridiagonal matrix.
 | |
| *>          If COMPZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          eigenvectors are desired, then  LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (max(1,2*N-2))
 | |
| *>          If COMPZ = 'N', then WORK is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  the algorithm has failed to find all the eigenvalues in
 | |
| *>                a total of 30*N iterations; if INFO = i, then i
 | |
| *>                elements of E have not converged to zero; on exit, D
 | |
| *>                and E contain the elements of a symmetric tridiagonal
 | |
| *>                matrix which is unitarily similar to the original
 | |
| *>                matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          COMPZ
 | |
|       INTEGER            INFO, LDZ, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               D( * ), E( * ), WORK( * )
 | |
|       COMPLEX            Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TWO, THREE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
 | |
|      $                   THREE = 3.0E0 )
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ),
 | |
|      $                   CONE = ( 1.0E0, 0.0E0 ) )
 | |
|       INTEGER            MAXIT
 | |
|       PARAMETER          ( MAXIT = 30 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
 | |
|      $                   LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
 | |
|      $                   NM1, NMAXIT
 | |
|       REAL               ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
 | |
|      $                   S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH, SLANST, SLAPY2
 | |
|       EXTERNAL           LSAME, SLAMCH, SLANST, SLAPY2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLASET, CLASR, CSWAP, SLAE2, SLAEV2, SLARTG,
 | |
|      $                   SLASCL, SLASRT, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( LSAME( COMPZ, 'N' ) ) THEN
 | |
|          ICOMPZ = 0
 | |
|       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
 | |
|          ICOMPZ = 1
 | |
|       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
 | |
|          ICOMPZ = 2
 | |
|       ELSE
 | |
|          ICOMPZ = -1
 | |
|       END IF
 | |
|       IF( ICOMPZ.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
 | |
|      $         N ) ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CSTEQR', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( ICOMPZ.EQ.2 )
 | |
|      $      Z( 1, 1 ) = CONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Determine the unit roundoff and over/underflow thresholds.
 | |
| *
 | |
|       EPS = SLAMCH( 'E' )
 | |
|       EPS2 = EPS**2
 | |
|       SAFMIN = SLAMCH( 'S' )
 | |
|       SAFMAX = ONE / SAFMIN
 | |
|       SSFMAX = SQRT( SAFMAX ) / THREE
 | |
|       SSFMIN = SQRT( SAFMIN ) / EPS2
 | |
| *
 | |
| *     Compute the eigenvalues and eigenvectors of the tridiagonal
 | |
| *     matrix.
 | |
| *
 | |
|       IF( ICOMPZ.EQ.2 )
 | |
|      $   CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
 | |
| *
 | |
|       NMAXIT = N*MAXIT
 | |
|       JTOT = 0
 | |
| *
 | |
| *     Determine where the matrix splits and choose QL or QR iteration
 | |
| *     for each block, according to whether top or bottom diagonal
 | |
| *     element is smaller.
 | |
| *
 | |
|       L1 = 1
 | |
|       NM1 = N - 1
 | |
| *
 | |
|    10 CONTINUE
 | |
|       IF( L1.GT.N )
 | |
|      $   GO TO 160
 | |
|       IF( L1.GT.1 )
 | |
|      $   E( L1-1 ) = ZERO
 | |
|       IF( L1.LE.NM1 ) THEN
 | |
|          DO 20 M = L1, NM1
 | |
|             TST = ABS( E( M ) )
 | |
|             IF( TST.EQ.ZERO )
 | |
|      $         GO TO 30
 | |
|             IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
 | |
|      $          1 ) ) ) )*EPS ) THEN
 | |
|                E( M ) = ZERO
 | |
|                GO TO 30
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
|       M = N
 | |
| *
 | |
|    30 CONTINUE
 | |
|       L = L1
 | |
|       LSV = L
 | |
|       LEND = M
 | |
|       LENDSV = LEND
 | |
|       L1 = M + 1
 | |
|       IF( LEND.EQ.L )
 | |
|      $   GO TO 10
 | |
| *
 | |
| *     Scale submatrix in rows and columns L to LEND
 | |
| *
 | |
|       ANORM = SLANST( 'I', LEND-L+1, D( L ), E( L ) )
 | |
|       ISCALE = 0
 | |
|       IF( ANORM.EQ.ZERO )
 | |
|      $   GO TO 10
 | |
|       IF( ANORM.GT.SSFMAX ) THEN
 | |
|          ISCALE = 1
 | |
|          CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
 | |
|      $                INFO )
 | |
|          CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
 | |
|      $                INFO )
 | |
|       ELSE IF( ANORM.LT.SSFMIN ) THEN
 | |
|          ISCALE = 2
 | |
|          CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
 | |
|      $                INFO )
 | |
|          CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
 | |
|      $                INFO )
 | |
|       END IF
 | |
| *
 | |
| *     Choose between QL and QR iteration
 | |
| *
 | |
|       IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
 | |
|          LEND = LSV
 | |
|          L = LENDSV
 | |
|       END IF
 | |
| *
 | |
|       IF( LEND.GT.L ) THEN
 | |
| *
 | |
| *        QL Iteration
 | |
| *
 | |
| *        Look for small subdiagonal element.
 | |
| *
 | |
|    40    CONTINUE
 | |
|          IF( L.NE.LEND ) THEN
 | |
|             LENDM1 = LEND - 1
 | |
|             DO 50 M = L, LENDM1
 | |
|                TST = ABS( E( M ) )**2
 | |
|                IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
 | |
|      $             SAFMIN )GO TO 60
 | |
|    50       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|          M = LEND
 | |
| *
 | |
|    60    CONTINUE
 | |
|          IF( M.LT.LEND )
 | |
|      $      E( M ) = ZERO
 | |
|          P = D( L )
 | |
|          IF( M.EQ.L )
 | |
|      $      GO TO 80
 | |
| *
 | |
| *        If remaining matrix is 2-by-2, use SLAE2 or SLAEV2
 | |
| *        to compute its eigensystem.
 | |
| *
 | |
|          IF( M.EQ.L+1 ) THEN
 | |
|             IF( ICOMPZ.GT.0 ) THEN
 | |
|                CALL SLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
 | |
|                WORK( L ) = C
 | |
|                WORK( N-1+L ) = S
 | |
|                CALL CLASR( 'R', 'V', 'B', N, 2, WORK( L ),
 | |
|      $                     WORK( N-1+L ), Z( 1, L ), LDZ )
 | |
|             ELSE
 | |
|                CALL SLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
 | |
|             END IF
 | |
|             D( L ) = RT1
 | |
|             D( L+1 ) = RT2
 | |
|             E( L ) = ZERO
 | |
|             L = L + 2
 | |
|             IF( L.LE.LEND )
 | |
|      $         GO TO 40
 | |
|             GO TO 140
 | |
|          END IF
 | |
| *
 | |
|          IF( JTOT.EQ.NMAXIT )
 | |
|      $      GO TO 140
 | |
|          JTOT = JTOT + 1
 | |
| *
 | |
| *        Form shift.
 | |
| *
 | |
|          G = ( D( L+1 )-P ) / ( TWO*E( L ) )
 | |
|          R = SLAPY2( G, ONE )
 | |
|          G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
 | |
| *
 | |
|          S = ONE
 | |
|          C = ONE
 | |
|          P = ZERO
 | |
| *
 | |
| *        Inner loop
 | |
| *
 | |
|          MM1 = M - 1
 | |
|          DO 70 I = MM1, L, -1
 | |
|             F = S*E( I )
 | |
|             B = C*E( I )
 | |
|             CALL SLARTG( G, F, C, S, R )
 | |
|             IF( I.NE.M-1 )
 | |
|      $         E( I+1 ) = R
 | |
|             G = D( I+1 ) - P
 | |
|             R = ( D( I )-G )*S + TWO*C*B
 | |
|             P = S*R
 | |
|             D( I+1 ) = G + P
 | |
|             G = C*R - B
 | |
| *
 | |
| *           If eigenvectors are desired, then save rotations.
 | |
| *
 | |
|             IF( ICOMPZ.GT.0 ) THEN
 | |
|                WORK( I ) = C
 | |
|                WORK( N-1+I ) = -S
 | |
|             END IF
 | |
| *
 | |
|    70    CONTINUE
 | |
| *
 | |
| *        If eigenvectors are desired, then apply saved rotations.
 | |
| *
 | |
|          IF( ICOMPZ.GT.0 ) THEN
 | |
|             MM = M - L + 1
 | |
|             CALL CLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ),
 | |
|      $                  Z( 1, L ), LDZ )
 | |
|          END IF
 | |
| *
 | |
|          D( L ) = D( L ) - P
 | |
|          E( L ) = G
 | |
|          GO TO 40
 | |
| *
 | |
| *        Eigenvalue found.
 | |
| *
 | |
|    80    CONTINUE
 | |
|          D( L ) = P
 | |
| *
 | |
|          L = L + 1
 | |
|          IF( L.LE.LEND )
 | |
|      $      GO TO 40
 | |
|          GO TO 140
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        QR Iteration
 | |
| *
 | |
| *        Look for small superdiagonal element.
 | |
| *
 | |
|    90    CONTINUE
 | |
|          IF( L.NE.LEND ) THEN
 | |
|             LENDP1 = LEND + 1
 | |
|             DO 100 M = L, LENDP1, -1
 | |
|                TST = ABS( E( M-1 ) )**2
 | |
|                IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
 | |
|      $             SAFMIN )GO TO 110
 | |
|   100       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|          M = LEND
 | |
| *
 | |
|   110    CONTINUE
 | |
|          IF( M.GT.LEND )
 | |
|      $      E( M-1 ) = ZERO
 | |
|          P = D( L )
 | |
|          IF( M.EQ.L )
 | |
|      $      GO TO 130
 | |
| *
 | |
| *        If remaining matrix is 2-by-2, use SLAE2 or SLAEV2
 | |
| *        to compute its eigensystem.
 | |
| *
 | |
|          IF( M.EQ.L-1 ) THEN
 | |
|             IF( ICOMPZ.GT.0 ) THEN
 | |
|                CALL SLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
 | |
|                WORK( M ) = C
 | |
|                WORK( N-1+M ) = S
 | |
|                CALL CLASR( 'R', 'V', 'F', N, 2, WORK( M ),
 | |
|      $                     WORK( N-1+M ), Z( 1, L-1 ), LDZ )
 | |
|             ELSE
 | |
|                CALL SLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
 | |
|             END IF
 | |
|             D( L-1 ) = RT1
 | |
|             D( L ) = RT2
 | |
|             E( L-1 ) = ZERO
 | |
|             L = L - 2
 | |
|             IF( L.GE.LEND )
 | |
|      $         GO TO 90
 | |
|             GO TO 140
 | |
|          END IF
 | |
| *
 | |
|          IF( JTOT.EQ.NMAXIT )
 | |
|      $      GO TO 140
 | |
|          JTOT = JTOT + 1
 | |
| *
 | |
| *        Form shift.
 | |
| *
 | |
|          G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
 | |
|          R = SLAPY2( G, ONE )
 | |
|          G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
 | |
| *
 | |
|          S = ONE
 | |
|          C = ONE
 | |
|          P = ZERO
 | |
| *
 | |
| *        Inner loop
 | |
| *
 | |
|          LM1 = L - 1
 | |
|          DO 120 I = M, LM1
 | |
|             F = S*E( I )
 | |
|             B = C*E( I )
 | |
|             CALL SLARTG( G, F, C, S, R )
 | |
|             IF( I.NE.M )
 | |
|      $         E( I-1 ) = R
 | |
|             G = D( I ) - P
 | |
|             R = ( D( I+1 )-G )*S + TWO*C*B
 | |
|             P = S*R
 | |
|             D( I ) = G + P
 | |
|             G = C*R - B
 | |
| *
 | |
| *           If eigenvectors are desired, then save rotations.
 | |
| *
 | |
|             IF( ICOMPZ.GT.0 ) THEN
 | |
|                WORK( I ) = C
 | |
|                WORK( N-1+I ) = S
 | |
|             END IF
 | |
| *
 | |
|   120    CONTINUE
 | |
| *
 | |
| *        If eigenvectors are desired, then apply saved rotations.
 | |
| *
 | |
|          IF( ICOMPZ.GT.0 ) THEN
 | |
|             MM = L - M + 1
 | |
|             CALL CLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ),
 | |
|      $                  Z( 1, M ), LDZ )
 | |
|          END IF
 | |
| *
 | |
|          D( L ) = D( L ) - P
 | |
|          E( LM1 ) = G
 | |
|          GO TO 90
 | |
| *
 | |
| *        Eigenvalue found.
 | |
| *
 | |
|   130    CONTINUE
 | |
|          D( L ) = P
 | |
| *
 | |
|          L = L - 1
 | |
|          IF( L.GE.LEND )
 | |
|      $      GO TO 90
 | |
|          GO TO 140
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling if necessary
 | |
| *
 | |
|   140 CONTINUE
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
 | |
|      $                D( LSV ), N, INFO )
 | |
|          CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
 | |
|      $                N, INFO )
 | |
|       ELSE IF( ISCALE.EQ.2 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
 | |
|      $                D( LSV ), N, INFO )
 | |
|          CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
 | |
|      $                N, INFO )
 | |
|       END IF
 | |
| *
 | |
| *     Check for no convergence to an eigenvalue after a total
 | |
| *     of N*MAXIT iterations.
 | |
| *
 | |
|       IF( JTOT.EQ.NMAXIT ) THEN
 | |
|          DO 150 I = 1, N - 1
 | |
|             IF( E( I ).NE.ZERO )
 | |
|      $         INFO = INFO + 1
 | |
|   150    CONTINUE
 | |
|          RETURN
 | |
|       END IF
 | |
|       GO TO 10
 | |
| *
 | |
| *     Order eigenvalues and eigenvectors.
 | |
| *
 | |
|   160 CONTINUE
 | |
|       IF( ICOMPZ.EQ.0 ) THEN
 | |
| *
 | |
| *        Use Quick Sort
 | |
| *
 | |
|          CALL SLASRT( 'I', N, D, INFO )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Use Selection Sort to minimize swaps of eigenvectors
 | |
| *
 | |
|          DO 180 II = 2, N
 | |
|             I = II - 1
 | |
|             K = I
 | |
|             P = D( I )
 | |
|             DO 170 J = II, N
 | |
|                IF( D( J ).LT.P ) THEN
 | |
|                   K = J
 | |
|                   P = D( J )
 | |
|                END IF
 | |
|   170       CONTINUE
 | |
|             IF( K.NE.I ) THEN
 | |
|                D( K ) = D( I )
 | |
|                D( I ) = P
 | |
|                CALL CSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
 | |
|             END IF
 | |
|   180    CONTINUE
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of CSTEQR
 | |
| *
 | |
|       END
 |