291 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| !> \brief \b CLARTG generates a plane rotation with real cosine and complex sine.
 | |
| !
 | |
| !  =========== DOCUMENTATION ===========
 | |
| !
 | |
| ! Online html documentation available at
 | |
| !            http://www.netlib.org/lapack/explore-html/
 | |
| !
 | |
| !  Definition:
 | |
| !  ===========
 | |
| !
 | |
| !       SUBROUTINE CLARTG( F, G, C, S, R )
 | |
| !
 | |
| !       .. Scalar Arguments ..
 | |
| !       REAL(wp)              C
 | |
| !       COMPLEX(wp)           F, G, R, S
 | |
| !       ..
 | |
| !
 | |
| !> \par Purpose:
 | |
| !  =============
 | |
| !>
 | |
| !> \verbatim
 | |
| !>
 | |
| !> CLARTG generates a plane rotation so that
 | |
| !>
 | |
| !>    [  C         S  ] . [ F ]  =  [ R ]
 | |
| !>    [ -conjg(S)  C  ]   [ G ]     [ 0 ]
 | |
| !>
 | |
| !> where C is real and C**2 + |S|**2 = 1.
 | |
| !>
 | |
| !> The mathematical formulas used for C and S are
 | |
| !>
 | |
| !>    sgn(x) = {  x / |x|,   x != 0
 | |
| !>             {  1,         x  = 0
 | |
| !>
 | |
| !>    R = sgn(F) * sqrt(|F|**2 + |G|**2)
 | |
| !>
 | |
| !>    C = |F| / sqrt(|F|**2 + |G|**2)
 | |
| !>
 | |
| !>    S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2)
 | |
| !>
 | |
| !> Special conditions:
 | |
| !>    If G=0, then C=1 and S=0.
 | |
| !>    If F=0, then C=0 and S is chosen so that R is real.
 | |
| !>
 | |
| !> When F and G are real, the formulas simplify to C = F/R and
 | |
| !> S = G/R, and the returned values of C, S, and R should be
 | |
| !> identical to those returned by SLARTG.
 | |
| !>
 | |
| !> The algorithm used to compute these quantities incorporates scaling
 | |
| !> to avoid overflow or underflow in computing the square root of the
 | |
| !> sum of squares.
 | |
| !>
 | |
| !> This is the same routine CROTG fom BLAS1, except that
 | |
| !> F and G are unchanged on return.
 | |
| !>
 | |
| !> Below, wp=>sp stands for single precision from LA_CONSTANTS module.
 | |
| !> \endverbatim
 | |
| !
 | |
| !  Arguments:
 | |
| !  ==========
 | |
| !
 | |
| !> \param[in] F
 | |
| !> \verbatim
 | |
| !>          F is COMPLEX(wp)
 | |
| !>          The first component of vector to be rotated.
 | |
| !> \endverbatim
 | |
| !>
 | |
| !> \param[in] G
 | |
| !> \verbatim
 | |
| !>          G is COMPLEX(wp)
 | |
| !>          The second component of vector to be rotated.
 | |
| !> \endverbatim
 | |
| !>
 | |
| !> \param[out] C
 | |
| !> \verbatim
 | |
| !>          C is REAL(wp)
 | |
| !>          The cosine of the rotation.
 | |
| !> \endverbatim
 | |
| !>
 | |
| !> \param[out] S
 | |
| !> \verbatim
 | |
| !>          S is COMPLEX(wp)
 | |
| !>          The sine of the rotation.
 | |
| !> \endverbatim
 | |
| !>
 | |
| !> \param[out] R
 | |
| !> \verbatim
 | |
| !>          R is COMPLEX(wp)
 | |
| !>          The nonzero component of the rotated vector.
 | |
| !> \endverbatim
 | |
| !
 | |
| !  Authors:
 | |
| !  ========
 | |
| !
 | |
| !> \author Weslley Pereira, University of Colorado Denver, USA
 | |
| !
 | |
| !> \date December 2021
 | |
| !
 | |
| !> \ingroup OTHERauxiliary
 | |
| !
 | |
| !> \par Further Details:
 | |
| !  =====================
 | |
| !>
 | |
| !> \verbatim
 | |
| !>
 | |
| !> Based on the algorithm from
 | |
| !>
 | |
| !>  Anderson E. (2017)
 | |
| !>  Algorithm 978: Safe Scaling in the Level 1 BLAS
 | |
| !>  ACM Trans Math Softw 44:1--28
 | |
| !>  https://doi.org/10.1145/3061665
 | |
| !>
 | |
| !> \endverbatim
 | |
| !
 | |
| subroutine CLARTG( f, g, c, s, r )
 | |
|    use LA_CONSTANTS, &
 | |
|    only: wp=>sp, zero=>szero, one=>sone, two=>stwo, czero, &
 | |
|          safmin=>ssafmin, safmax=>ssafmax
 | |
| !
 | |
| !  -- LAPACK auxiliary routine --
 | |
| !  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| !  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| !     February 2021
 | |
| !
 | |
| !  .. Scalar Arguments ..
 | |
|    real(wp)           c
 | |
|    complex(wp)        f, g, r, s
 | |
| !  ..
 | |
| !  .. Local Scalars ..
 | |
|    real(wp) :: d, f1, f2, g1, g2, h2, u, v, w, rtmin, rtmax
 | |
|    complex(wp) :: fs, gs, t
 | |
| !  ..
 | |
| !  .. Intrinsic Functions ..
 | |
|    intrinsic :: abs, aimag, conjg, max, min, real, sqrt
 | |
| !  ..
 | |
| !  .. Statement Functions ..
 | |
|    real(wp) :: ABSSQ
 | |
| !  ..
 | |
| !  .. Statement Function definitions ..
 | |
|    ABSSQ( t ) = real( t )**2 + aimag( t )**2
 | |
| !  ..
 | |
| !  .. Constants ..
 | |
|    rtmin = sqrt( safmin )
 | |
| !  ..
 | |
| !  .. Executable Statements ..
 | |
| !
 | |
|    if( g == czero ) then
 | |
|       c = one
 | |
|       s = czero
 | |
|       r = f
 | |
|    else if( f == czero ) then
 | |
|       c = zero
 | |
|       if( real(g) == zero ) then
 | |
|          r = abs(aimag(g))
 | |
|          s = conjg( g ) / r
 | |
|       elseif( aimag(g) == zero ) then
 | |
|          r = abs(real(g))
 | |
|          s = conjg( g ) / r
 | |
|       else
 | |
|          g1 = max( abs(real(g)), abs(aimag(g)) )
 | |
|          rtmax = sqrt( safmax/2 )
 | |
|          if( g1 > rtmin .and. g1 < rtmax ) then
 | |
| !
 | |
| !        Use unscaled algorithm
 | |
| !
 | |
| !           The following two lines can be replaced by `d = abs( g )`.
 | |
| !           This algorithm do not use the intrinsic complex abs.
 | |
|             g2 = ABSSQ( g )
 | |
|             d = sqrt( g2 )
 | |
|             s = conjg( g ) / d
 | |
|             r = d
 | |
|          else
 | |
| !
 | |
| !        Use scaled algorithm
 | |
| !
 | |
|             u = min( safmax, max( safmin, g1 ) )
 | |
|             gs = g / u
 | |
| !           The following two lines can be replaced by `d = abs( gs )`.
 | |
| !           This algorithm do not use the intrinsic complex abs.
 | |
|             g2 = ABSSQ( gs )
 | |
|             d = sqrt( g2 )
 | |
|             s = conjg( gs ) / d
 | |
|             r = d*u
 | |
|          end if
 | |
|       end if
 | |
|    else
 | |
|       f1 = max( abs(real(f)), abs(aimag(f)) )
 | |
|       g1 = max( abs(real(g)), abs(aimag(g)) )
 | |
|       rtmax = sqrt( safmax/4 )
 | |
|       if( f1 > rtmin .and. f1 < rtmax .and. &
 | |
|           g1 > rtmin .and. g1 < rtmax ) then
 | |
| !
 | |
| !        Use unscaled algorithm
 | |
| !
 | |
|          f2 = ABSSQ( f )
 | |
|          g2 = ABSSQ( g )
 | |
|          h2 = f2 + g2
 | |
|          ! safmin <= f2 <= h2 <= safmax 
 | |
|          if( f2 >= h2 * safmin ) then
 | |
|             ! safmin <= f2/h2 <= 1, and h2/f2 is finite
 | |
|             c = sqrt( f2 / h2 )
 | |
|             r = f / c
 | |
|             rtmax = rtmax * 2
 | |
|             if( f2 > rtmin .and. h2 < rtmax ) then
 | |
|                ! safmin <= sqrt( f2*h2 ) <= safmax
 | |
|                s = conjg( g ) * ( f / sqrt( f2*h2 ) )
 | |
|             else
 | |
|                s = conjg( g ) * ( r / h2 )
 | |
|             end if
 | |
|          else
 | |
|             ! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
 | |
|             ! Moreover,
 | |
|             !  safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
 | |
|             !  sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
 | |
|             ! Also,
 | |
|             !  g2 >> f2, which means that h2 = g2.
 | |
|             d = sqrt( f2 * h2 )
 | |
|             c = f2 / d
 | |
|             if( c >= safmin ) then
 | |
|                r = f / c
 | |
|             else
 | |
|                ! f2 / sqrt(f2 * h2) < safmin, then
 | |
|                !  sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
 | |
|                r = f * ( h2 / d )
 | |
|             end if
 | |
|             s = conjg( g ) * ( f / d )
 | |
|          end if
 | |
|       else
 | |
| !
 | |
| !        Use scaled algorithm
 | |
| !
 | |
|          u = min( safmax, max( safmin, f1, g1 ) )
 | |
|          gs = g / u
 | |
|          g2 = ABSSQ( gs )
 | |
|          if( f1 / u < rtmin ) then
 | |
| !
 | |
| !           f is not well-scaled when scaled by g1.
 | |
| !           Use a different scaling for f.
 | |
| !
 | |
|             v = min( safmax, max( safmin, f1 ) )
 | |
|             w = v / u
 | |
|             fs = f / v
 | |
|             f2 = ABSSQ( fs )
 | |
|             h2 = f2*w**2 + g2
 | |
|          else
 | |
| !
 | |
| !           Otherwise use the same scaling for f and g.
 | |
| !
 | |
|             w = one
 | |
|             fs = f / u
 | |
|             f2 = ABSSQ( fs )
 | |
|             h2 = f2 + g2
 | |
|          end if
 | |
|          ! safmin <= f2 <= h2 <= safmax 
 | |
|          if( f2 >= h2 * safmin ) then
 | |
|             ! safmin <= f2/h2 <= 1, and h2/f2 is finite
 | |
|             c = sqrt( f2 / h2 )
 | |
|             r = fs / c
 | |
|             rtmax = rtmax * 2
 | |
|             if( f2 > rtmin .and. h2 < rtmax ) then
 | |
|                ! safmin <= sqrt( f2*h2 ) <= safmax
 | |
|                s = conjg( gs ) * ( fs / sqrt( f2*h2 ) )
 | |
|             else
 | |
|                s = conjg( gs ) * ( r / h2 )
 | |
|             end if
 | |
|          else
 | |
|             ! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
 | |
|             ! Moreover,
 | |
|             !  safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
 | |
|             !  sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
 | |
|             ! Also,
 | |
|             !  g2 >> f2, which means that h2 = g2.
 | |
|             d = sqrt( f2 * h2 )
 | |
|             c = f2 / d
 | |
|             if( c >= safmin ) then
 | |
|                r = fs / c
 | |
|             else
 | |
|                ! f2 / sqrt(f2 * h2) < safmin, then
 | |
|                !  sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
 | |
|                r = fs * ( h2 / d )
 | |
|             end if
 | |
|             s = conjg( gs ) * ( fs / d )
 | |
|          end if
 | |
|          ! Rescale c and r
 | |
|          c = c * w
 | |
|          r = r * u
 | |
|       end if
 | |
|    end if
 | |
|    return
 | |
| end subroutine
 |