933 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			933 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGSVJ0 pre-processor for the routine cgesvj.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGSVJ0 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgsvj0.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgsvj0.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgsvj0.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
 | |
| *                          SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
 | |
| *       REAL               EPS, SFMIN, TOL
 | |
| *       CHARACTER*1        JOBV
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
 | |
| *       REAL               SVA( N )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGSVJ0 is called from CGESVJ as a pre-processor and that is its main
 | |
| *> purpose. It applies Jacobi rotations in the same way as CGESVJ does, but
 | |
| *> it does not check convergence (stopping criterion). Few tuning
 | |
| *> parameters (marked by [TP]) are available for the implementer.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBV
 | |
| *> \verbatim
 | |
| *>          JOBV is CHARACTER*1
 | |
| *>          Specifies whether the output from this procedure is used
 | |
| *>          to compute the matrix V:
 | |
| *>          = 'V': the product of the Jacobi rotations is accumulated
 | |
| *>                 by postmultiplying the N-by-N array V.
 | |
| *>                (See the description of V.)
 | |
| *>          = 'A': the product of the Jacobi rotations is accumulated
 | |
| *>                 by postmultiplying the MV-by-N array V.
 | |
| *>                (See the descriptions of MV and V.)
 | |
| *>          = 'N': the Jacobi rotations are not accumulated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the input matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the input matrix A.
 | |
| *>          M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, M-by-N matrix A, such that A*diag(D) represents
 | |
| *>          the input matrix.
 | |
| *>          On exit,
 | |
| *>          A_onexit * diag(D_onexit) represents the input matrix A*diag(D)
 | |
| *>          post-multiplied by a sequence of Jacobi rotations, where the
 | |
| *>          rotation threshold and the total number of sweeps are given in
 | |
| *>          TOL and NSWEEP, respectively.
 | |
| *>          (See the descriptions of D, TOL and NSWEEP.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is COMPLEX array, dimension (N)
 | |
| *>          The array D accumulates the scaling factors from the complex scaled
 | |
| *>          Jacobi rotations.
 | |
| *>          On entry, A*diag(D) represents the input matrix.
 | |
| *>          On exit, A_onexit*diag(D_onexit) represents the input matrix
 | |
| *>          post-multiplied by a sequence of Jacobi rotations, where the
 | |
| *>          rotation threshold and the total number of sweeps are given in
 | |
| *>          TOL and NSWEEP, respectively.
 | |
| *>          (See the descriptions of A, TOL and NSWEEP.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] SVA
 | |
| *> \verbatim
 | |
| *>          SVA is REAL array, dimension (N)
 | |
| *>          On entry, SVA contains the Euclidean norms of the columns of
 | |
| *>          the matrix A*diag(D).
 | |
| *>          On exit, SVA contains the Euclidean norms of the columns of
 | |
| *>          the matrix A_onexit*diag(D_onexit).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MV
 | |
| *> \verbatim
 | |
| *>          MV is INTEGER
 | |
| *>          If JOBV = 'A', then MV rows of V are post-multiplied by a
 | |
| *>                           sequence of Jacobi rotations.
 | |
| *>          If JOBV = 'N',   then MV is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX array, dimension (LDV,N)
 | |
| *>          If JOBV = 'V' then N rows of V are post-multiplied by a
 | |
| *>                           sequence of Jacobi rotations.
 | |
| *>          If JOBV = 'A' then MV rows of V are post-multiplied by a
 | |
| *>                           sequence of Jacobi rotations.
 | |
| *>          If JOBV = 'N',   then V is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V,  LDV >= 1.
 | |
| *>          If JOBV = 'V', LDV >= N.
 | |
| *>          If JOBV = 'A', LDV >= MV.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] EPS
 | |
| *> \verbatim
 | |
| *>          EPS is REAL
 | |
| *>          EPS = SLAMCH('Epsilon')
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SFMIN
 | |
| *> \verbatim
 | |
| *>          SFMIN is REAL
 | |
| *>          SFMIN = SLAMCH('Safe Minimum')
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TOL
 | |
| *> \verbatim
 | |
| *>          TOL is REAL
 | |
| *>          TOL is the threshold for Jacobi rotations. For a pair
 | |
| *>          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
 | |
| *>          applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NSWEEP
 | |
| *> \verbatim
 | |
| *>          NSWEEP is INTEGER
 | |
| *>          NSWEEP is the number of sweeps of Jacobi rotations to be
 | |
| *>          performed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          LWORK is the dimension of WORK. LWORK >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, then the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> CGSVJ0 is used just to enable CGESVJ to call a simplified version of
 | |
| *> itself to work on a submatrix of the original matrix.
 | |
| *>
 | |
| *> \par Contributor:
 | |
| *  ==================
 | |
| *>
 | |
| *> Zlatko Drmac (Zagreb, Croatia)
 | |
| *>
 | |
| *> \par Bugs, Examples and Comments:
 | |
| *  =================================
 | |
| *>
 | |
| *> Please report all bugs and send interesting test examples and comments to
 | |
| *> drmac@math.hr. Thank you.
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
 | |
|      $                   SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
|       IMPLICIT NONE
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
 | |
|       REAL               EPS, SFMIN, TOL
 | |
|       CHARACTER*1        JOBV
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
 | |
|       REAL               SVA( N )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Parameters ..
 | |
|       REAL               ZERO, HALF, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
 | |
|       COMPLEX      CZERO,                  CONE
 | |
|       PARAMETER  ( CZERO = (0.0E0, 0.0E0), CONE = (1.0E0, 0.0E0) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX            AAPQ, OMPQ
 | |
|       REAL               AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
 | |
|      $                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
 | |
|      $                   ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
 | |
|      $                   THSIGN
 | |
|       INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
 | |
|      $                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
 | |
|      $                   NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
 | |
|       LOGICAL            APPLV, ROTOK, RSVEC
 | |
| *     ..
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC ABS, MAX, CONJG, REAL, MIN, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SCNRM2
 | |
|       COMPLEX            CDOTC
 | |
|       INTEGER            ISAMAX
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           ISAMAX, LSAME, CDOTC, SCNRM2
 | |
| *     ..
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
| *     ..
 | |
| *     from BLAS
 | |
|       EXTERNAL           CCOPY, CROT, CSWAP, CAXPY
 | |
| *     from LAPACK
 | |
|       EXTERNAL           CLASCL, CLASSQ, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       APPLV = LSAME( JOBV, 'A' )
 | |
|       RSVEC = LSAME( JOBV, 'V' )
 | |
|       IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.M ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
 | |
|      $         ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( TOL.LE.EPS ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( NSWEEP.LT.0 ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( LWORK.LT.M ) THEN
 | |
|          INFO = -16
 | |
|       ELSE
 | |
|          INFO = 0
 | |
|       END IF
 | |
| *
 | |
| *     #:(
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGSVJ0', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( RSVEC ) THEN
 | |
|          MVL = N
 | |
|       ELSE IF( APPLV ) THEN
 | |
|          MVL = MV
 | |
|       END IF
 | |
|       RSVEC = RSVEC .OR. APPLV
 | |
| 
 | |
|       ROOTEPS = SQRT( EPS )
 | |
|       ROOTSFMIN = SQRT( SFMIN )
 | |
|       SMALL = SFMIN / EPS
 | |
|       BIG = ONE / SFMIN
 | |
|       ROOTBIG = ONE / ROOTSFMIN
 | |
|       BIGTHETA = ONE / ROOTEPS
 | |
|       ROOTTOL = SQRT( TOL )
 | |
| *
 | |
| *     .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
 | |
| *
 | |
|       EMPTSW = ( N*( N-1 ) ) / 2
 | |
|       NOTROT = 0
 | |
| *
 | |
| *     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
 | |
| *
 | |
| 
 | |
|       SWBAND = 0
 | |
| *[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
 | |
| *     if CGESVJ is used as a computational routine in the preconditioned
 | |
| *     Jacobi SVD algorithm CGEJSV. For sweeps i=1:SWBAND the procedure
 | |
| *     works on pivots inside a band-like region around the diagonal.
 | |
| *     The boundaries are determined dynamically, based on the number of
 | |
| *     pivots above a threshold.
 | |
| *
 | |
|       KBL = MIN( 8, N )
 | |
| *[TP] KBL is a tuning parameter that defines the tile size in the
 | |
| *     tiling of the p-q loops of pivot pairs. In general, an optimal
 | |
| *     value of KBL depends on the matrix dimensions and on the
 | |
| *     parameters of the computer's memory.
 | |
| *
 | |
|       NBL = N / KBL
 | |
|       IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
 | |
| *
 | |
|       BLSKIP = KBL**2
 | |
| *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
 | |
| *
 | |
|       ROWSKIP = MIN( 5, KBL )
 | |
| *[TP] ROWSKIP is a tuning parameter.
 | |
| *
 | |
|       LKAHEAD = 1
 | |
| *[TP] LKAHEAD is a tuning parameter.
 | |
| *
 | |
| *     Quasi block transformations, using the lower (upper) triangular
 | |
| *     structure of the input matrix. The quasi-block-cycling usually
 | |
| *     invokes cubic convergence. Big part of this cycle is done inside
 | |
| *     canonical subspaces of dimensions less than M.
 | |
| *
 | |
| *
 | |
| *     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
 | |
| *
 | |
|       DO 1993 i = 1, NSWEEP
 | |
| *
 | |
| *     .. go go go ...
 | |
| *
 | |
|          MXAAPQ = ZERO
 | |
|          MXSINJ = ZERO
 | |
|          ISWROT = 0
 | |
| *
 | |
|          NOTROT = 0
 | |
|          PSKIPPED = 0
 | |
| *
 | |
| *     Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
 | |
| *     1 <= p < q <= N. This is the first step toward a blocked implementation
 | |
| *     of the rotations. New implementation, based on block transformations,
 | |
| *     is under development.
 | |
| *
 | |
|          DO 2000 ibr = 1, NBL
 | |
| *
 | |
|             igl = ( ibr-1 )*KBL + 1
 | |
| *
 | |
|             DO 1002 ir1 = 0, MIN( LKAHEAD, NBL-ibr )
 | |
| *
 | |
|                igl = igl + ir1*KBL
 | |
| *
 | |
|                DO 2001 p = igl, MIN( igl+KBL-1, N-1 )
 | |
| *
 | |
| *     .. de Rijk's pivoting
 | |
| *
 | |
|                   q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
 | |
|                   IF( p.NE.q ) THEN
 | |
|                      CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
 | |
|                      IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1,
 | |
|      $                                           V( 1, q ), 1 )
 | |
|                      TEMP1 = SVA( p )
 | |
|                      SVA( p ) = SVA( q )
 | |
|                      SVA( q ) = TEMP1
 | |
|                      AAPQ = D(p)
 | |
|                      D(p) = D(q)
 | |
|                      D(q) = AAPQ
 | |
|                   END IF
 | |
| *
 | |
|                   IF( ir1.EQ.0 ) THEN
 | |
| *
 | |
| *        Column norms are periodically updated by explicit
 | |
| *        norm computation.
 | |
| *        Caveat:
 | |
| *        Unfortunately, some BLAS implementations compute SNCRM2(M,A(1,p),1)
 | |
| *        as SQRT(S=CDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to
 | |
| *        overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to
 | |
| *        underflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
 | |
| *        Hence, SCNRM2 cannot be trusted, not even in the case when
 | |
| *        the true norm is far from the under(over)flow boundaries.
 | |
| *        If properly implemented SCNRM2 is available, the IF-THEN-ELSE-END IF
 | |
| *        below should be replaced with "AAPP = SCNRM2( M, A(1,p), 1 )".
 | |
| *
 | |
|                      IF( ( SVA( p ).LT.ROOTBIG ) .AND.
 | |
|      $                    ( SVA( p ).GT.ROOTSFMIN ) ) THEN
 | |
|                         SVA( p ) = SCNRM2( M, A( 1, p ), 1 )
 | |
|                      ELSE
 | |
|                         TEMP1 = ZERO
 | |
|                         AAPP = ONE
 | |
|                         CALL CLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
 | |
|                         SVA( p ) = TEMP1*SQRT( AAPP )
 | |
|                      END IF
 | |
|                      AAPP = SVA( p )
 | |
|                   ELSE
 | |
|                      AAPP = SVA( p )
 | |
|                   END IF
 | |
| *
 | |
|                   IF( AAPP.GT.ZERO ) THEN
 | |
| *
 | |
|                      PSKIPPED = 0
 | |
| *
 | |
|                      DO 2002 q = p + 1, MIN( igl+KBL-1, N )
 | |
| *
 | |
|                         AAQQ = SVA( q )
 | |
| *
 | |
|                         IF( AAQQ.GT.ZERO ) THEN
 | |
| *
 | |
|                            AAPP0 = AAPP
 | |
|                            IF( AAQQ.GE.ONE ) THEN
 | |
|                               ROTOK = ( SMALL*AAPP ).LE.AAQQ
 | |
|                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
 | |
|                                  AAPQ = ( CDOTC( M, A( 1, p ), 1,
 | |
|      $                                   A( 1, q ), 1 ) / AAQQ ) / AAPP
 | |
|                               ELSE
 | |
|                                  CALL CCOPY( M, A( 1, p ), 1,
 | |
|      $                                        WORK, 1 )
 | |
|                                  CALL CLASCL( 'G', 0, 0, AAPP, ONE,
 | |
|      $                                M, 1, WORK, LDA, IERR )
 | |
|                                  AAPQ = CDOTC( M, WORK, 1,
 | |
|      $                                   A( 1, q ), 1 ) / AAQQ
 | |
|                               END IF
 | |
|                            ELSE
 | |
|                               ROTOK = AAPP.LE.( AAQQ / SMALL )
 | |
|                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
 | |
|                                  AAPQ = ( CDOTC( M, A( 1, p ), 1,
 | |
|      $                                    A( 1, q ), 1 ) / AAPP ) / AAQQ
 | |
|                               ELSE
 | |
|                                  CALL CCOPY( M, A( 1, q ), 1,
 | |
|      $                                        WORK, 1 )
 | |
|                                  CALL CLASCL( 'G', 0, 0, AAQQ,
 | |
|      $                                         ONE, M, 1,
 | |
|      $                                         WORK, LDA, IERR )
 | |
|                                  AAPQ = CDOTC( M, A( 1, p ), 1,
 | |
|      $                                   WORK, 1 ) / AAPP
 | |
|                               END IF
 | |
|                            END IF
 | |
| *
 | |
| *                           AAPQ = AAPQ * CONJG( CWORK(p) ) * CWORK(q)
 | |
|                            AAPQ1  = -ABS(AAPQ)
 | |
|                            MXAAPQ = MAX( MXAAPQ, -AAPQ1 )
 | |
| *
 | |
| *        TO rotate or NOT to rotate, THAT is the question ...
 | |
| *
 | |
|                            IF( ABS( AAPQ1 ).GT.TOL ) THEN
 | |
|                               OMPQ = AAPQ / ABS(AAPQ)
 | |
| *
 | |
| *           .. rotate
 | |
| *[RTD]      ROTATED = ROTATED + ONE
 | |
| *
 | |
|                               IF( ir1.EQ.0 ) THEN
 | |
|                                  NOTROT = 0
 | |
|                                  PSKIPPED = 0
 | |
|                                  ISWROT = ISWROT + 1
 | |
|                               END IF
 | |
| *
 | |
|                               IF( ROTOK ) THEN
 | |
| *
 | |
|                                  AQOAP = AAQQ / AAPP
 | |
|                                  APOAQ = AAPP / AAQQ
 | |
|                                  THETA = -HALF*ABS( AQOAP-APOAQ )/AAPQ1
 | |
| *
 | |
|                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
 | |
| *
 | |
|                                     T  = HALF / THETA
 | |
|                                     CS = ONE
 | |
| 
 | |
|                                     CALL CROT( M, A(1,p), 1, A(1,q), 1,
 | |
|      $                                          CS, CONJG(OMPQ)*T )
 | |
|                                     IF ( RSVEC ) THEN
 | |
|                                         CALL CROT( MVL, V(1,p), 1,
 | |
|      $                                  V(1,q), 1, CS, CONJG(OMPQ)*T )
 | |
|                                     END IF
 | |
| 
 | |
|                                     SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | |
|      $                                          ONE+T*APOAQ*AAPQ1 ) )
 | |
|                                     AAPP = AAPP*SQRT( MAX( ZERO,
 | |
|      $                                          ONE-T*AQOAP*AAPQ1 ) )
 | |
|                                     MXSINJ = MAX( MXSINJ, ABS( T ) )
 | |
| *
 | |
|                                  ELSE
 | |
| *
 | |
| *                 .. choose correct signum for THETA and rotate
 | |
| *
 | |
|                                     THSIGN = -SIGN( ONE, AAPQ1 )
 | |
|                                     T = ONE / ( THETA+THSIGN*
 | |
|      $                                   SQRT( ONE+THETA*THETA ) )
 | |
|                                     CS = SQRT( ONE / ( ONE+T*T ) )
 | |
|                                     SN = T*CS
 | |
| *
 | |
|                                     MXSINJ = MAX( MXSINJ, ABS( SN ) )
 | |
|                                     SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | |
|      $                                          ONE+T*APOAQ*AAPQ1 ) )
 | |
|                                     AAPP = AAPP*SQRT( MAX( ZERO,
 | |
|      $                                      ONE-T*AQOAP*AAPQ1 ) )
 | |
| *
 | |
|                                     CALL CROT( M, A(1,p), 1, A(1,q), 1,
 | |
|      $                                          CS, CONJG(OMPQ)*SN )
 | |
|                                     IF ( RSVEC ) THEN
 | |
|                                         CALL CROT( MVL, V(1,p), 1,
 | |
|      $                                  V(1,q), 1, CS, CONJG(OMPQ)*SN )
 | |
|                                     END IF
 | |
|                                  END IF
 | |
|                                  D(p) = -D(q) * OMPQ
 | |
| *
 | |
|                                  ELSE
 | |
| *              .. have to use modified Gram-Schmidt like transformation
 | |
|                                  CALL CCOPY( M, A( 1, p ), 1,
 | |
|      $                                       WORK, 1 )
 | |
|                                  CALL CLASCL( 'G', 0, 0, AAPP, ONE, M,
 | |
|      $                                        1, WORK, LDA,
 | |
|      $                                        IERR )
 | |
|                                  CALL CLASCL( 'G', 0, 0, AAQQ, ONE, M,
 | |
|      $                                        1, A( 1, q ), LDA, IERR )
 | |
|                                  CALL CAXPY( M, -AAPQ, WORK, 1,
 | |
|      $                                       A( 1, q ), 1 )
 | |
|                                  CALL CLASCL( 'G', 0, 0, ONE, AAQQ, M,
 | |
|      $                                        1, A( 1, q ), LDA, IERR )
 | |
|                                  SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | |
|      $                                      ONE-AAPQ1*AAPQ1 ) )
 | |
|                                  MXSINJ = MAX( MXSINJ, SFMIN )
 | |
|                               END IF
 | |
| *           END IF ROTOK THEN ... ELSE
 | |
| *
 | |
| *           In the case of cancellation in updating SVA(q), SVA(p)
 | |
| *           recompute SVA(q), SVA(p).
 | |
| *
 | |
|                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
 | |
|      $                            THEN
 | |
|                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
 | |
|      $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
 | |
|                                     SVA( q ) = SCNRM2( M, A( 1, q ), 1 )
 | |
|                                  ELSE
 | |
|                                     T = ZERO
 | |
|                                     AAQQ = ONE
 | |
|                                     CALL CLASSQ( M, A( 1, q ), 1, T,
 | |
|      $                                           AAQQ )
 | |
|                                     SVA( q ) = T*SQRT( AAQQ )
 | |
|                                  END IF
 | |
|                               END IF
 | |
|                               IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
 | |
|                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
 | |
|      $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
 | |
|                                     AAPP = SCNRM2( M, A( 1, p ), 1 )
 | |
|                                  ELSE
 | |
|                                     T = ZERO
 | |
|                                     AAPP = ONE
 | |
|                                     CALL CLASSQ( M, A( 1, p ), 1, T,
 | |
|      $                                           AAPP )
 | |
|                                     AAPP = T*SQRT( AAPP )
 | |
|                                  END IF
 | |
|                                  SVA( p ) = AAPP
 | |
|                               END IF
 | |
| *
 | |
|                            ELSE
 | |
| *        A(:,p) and A(:,q) already numerically orthogonal
 | |
|                               IF( ir1.EQ.0 )NOTROT = NOTROT + 1
 | |
| *[RTD]      SKIPPED  = SKIPPED  + 1
 | |
|                               PSKIPPED = PSKIPPED + 1
 | |
|                            END IF
 | |
|                         ELSE
 | |
| *        A(:,q) is zero column
 | |
|                            IF( ir1.EQ.0 )NOTROT = NOTROT + 1
 | |
|                            PSKIPPED = PSKIPPED + 1
 | |
|                         END IF
 | |
| *
 | |
|                         IF( ( i.LE.SWBAND ) .AND.
 | |
|      $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
 | |
|                            IF( ir1.EQ.0 )AAPP = -AAPP
 | |
|                            NOTROT = 0
 | |
|                            GO TO 2103
 | |
|                         END IF
 | |
| *
 | |
|  2002                CONTINUE
 | |
| *     END q-LOOP
 | |
| *
 | |
|  2103                CONTINUE
 | |
| *     bailed out of q-loop
 | |
| *
 | |
|                      SVA( p ) = AAPP
 | |
| *
 | |
|                   ELSE
 | |
|                      SVA( p ) = AAPP
 | |
|                      IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
 | |
|      $                   NOTROT = NOTROT + MIN( igl+KBL-1, N ) - p
 | |
|                   END IF
 | |
| *
 | |
|  2001          CONTINUE
 | |
| *     end of the p-loop
 | |
| *     end of doing the block ( ibr, ibr )
 | |
|  1002       CONTINUE
 | |
| *     end of ir1-loop
 | |
| *
 | |
| * ... go to the off diagonal blocks
 | |
| *
 | |
|             igl = ( ibr-1 )*KBL + 1
 | |
| *
 | |
|             DO 2010 jbc = ibr + 1, NBL
 | |
| *
 | |
|                jgl = ( jbc-1 )*KBL + 1
 | |
| *
 | |
| *        doing the block at ( ibr, jbc )
 | |
| *
 | |
|                IJBLSK = 0
 | |
|                DO 2100 p = igl, MIN( igl+KBL-1, N )
 | |
| *
 | |
|                   AAPP = SVA( p )
 | |
|                   IF( AAPP.GT.ZERO ) THEN
 | |
| *
 | |
|                      PSKIPPED = 0
 | |
| *
 | |
|                      DO 2200 q = jgl, MIN( jgl+KBL-1, N )
 | |
| *
 | |
|                         AAQQ = SVA( q )
 | |
|                         IF( AAQQ.GT.ZERO ) THEN
 | |
|                            AAPP0 = AAPP
 | |
| *
 | |
| *     .. M x 2 Jacobi SVD ..
 | |
| *
 | |
| *        Safe Gram matrix computation
 | |
| *
 | |
|                            IF( AAQQ.GE.ONE ) THEN
 | |
|                               IF( AAPP.GE.AAQQ ) THEN
 | |
|                                  ROTOK = ( SMALL*AAPP ).LE.AAQQ
 | |
|                               ELSE
 | |
|                                  ROTOK = ( SMALL*AAQQ ).LE.AAPP
 | |
|                               END IF
 | |
|                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
 | |
|                                  AAPQ = ( CDOTC( M, A( 1, p ), 1,
 | |
|      $                                  A( 1, q ), 1 ) / AAQQ ) / AAPP
 | |
|                               ELSE
 | |
|                                  CALL CCOPY( M, A( 1, p ), 1,
 | |
|      $                                       WORK, 1 )
 | |
|                                  CALL CLASCL( 'G', 0, 0, AAPP,
 | |
|      $                                        ONE, M, 1,
 | |
|      $                                        WORK, LDA, IERR )
 | |
|                                  AAPQ = CDOTC( M, WORK, 1,
 | |
|      $                                  A( 1, q ), 1 ) / AAQQ
 | |
|                               END IF
 | |
|                            ELSE
 | |
|                               IF( AAPP.GE.AAQQ ) THEN
 | |
|                                  ROTOK = AAPP.LE.( AAQQ / SMALL )
 | |
|                               ELSE
 | |
|                                  ROTOK = AAQQ.LE.( AAPP / SMALL )
 | |
|                               END IF
 | |
|                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
 | |
|                                  AAPQ = ( CDOTC( M, A( 1, p ), 1,
 | |
|      $                                 A( 1, q ), 1 ) / MAX(AAQQ,AAPP) )
 | |
|      $                                               / MIN(AAQQ,AAPP)
 | |
|                               ELSE
 | |
|                                  CALL CCOPY( M, A( 1, q ), 1,
 | |
|      $                                       WORK, 1 )
 | |
|                                  CALL CLASCL( 'G', 0, 0, AAQQ,
 | |
|      $                                        ONE, M, 1,
 | |
|      $                                        WORK, LDA, IERR )
 | |
|                                  AAPQ = CDOTC( M, A( 1, p ), 1,
 | |
|      $                                  WORK, 1 ) / AAPP
 | |
|                               END IF
 | |
|                            END IF
 | |
| *
 | |
| *                           AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q)
 | |
|                            AAPQ1  = -ABS(AAPQ)
 | |
|                            MXAAPQ = MAX( MXAAPQ, -AAPQ1 )
 | |
| *
 | |
| *        TO rotate or NOT to rotate, THAT is the question ...
 | |
| *
 | |
|                            IF( ABS( AAPQ1 ).GT.TOL ) THEN
 | |
|                               OMPQ = AAPQ / ABS(AAPQ)
 | |
|                               NOTROT = 0
 | |
| *[RTD]      ROTATED  = ROTATED + 1
 | |
|                               PSKIPPED = 0
 | |
|                               ISWROT = ISWROT + 1
 | |
| *
 | |
|                               IF( ROTOK ) THEN
 | |
| *
 | |
|                                  AQOAP = AAQQ / AAPP
 | |
|                                  APOAQ = AAPP / AAQQ
 | |
|                                  THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
 | |
|                                  IF( AAQQ.GT.AAPP0 )THETA = -THETA
 | |
| *
 | |
|                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
 | |
|                                     T  = HALF / THETA
 | |
|                                     CS = ONE
 | |
|                                     CALL CROT( M, A(1,p), 1, A(1,q), 1,
 | |
|      $                                          CS, CONJG(OMPQ)*T )
 | |
|                                     IF( RSVEC ) THEN
 | |
|                                         CALL CROT( MVL, V(1,p), 1,
 | |
|      $                                  V(1,q), 1, CS, CONJG(OMPQ)*T )
 | |
|                                     END IF
 | |
|                                     SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | |
|      $                                         ONE+T*APOAQ*AAPQ1 ) )
 | |
|                                     AAPP = AAPP*SQRT( MAX( ZERO,
 | |
|      $                                     ONE-T*AQOAP*AAPQ1 ) )
 | |
|                                     MXSINJ = MAX( MXSINJ, ABS( T ) )
 | |
|                                  ELSE
 | |
| *
 | |
| *                 .. choose correct signum for THETA and rotate
 | |
| *
 | |
|                                     THSIGN = -SIGN( ONE, AAPQ1 )
 | |
|                                     IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
 | |
|                                     T = ONE / ( THETA+THSIGN*
 | |
|      $                                  SQRT( ONE+THETA*THETA ) )
 | |
|                                     CS = SQRT( ONE / ( ONE+T*T ) )
 | |
|                                     SN = T*CS
 | |
|                                     MXSINJ = MAX( MXSINJ, ABS( SN ) )
 | |
|                                     SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | |
|      $                                         ONE+T*APOAQ*AAPQ1 ) )
 | |
|                                     AAPP = AAPP*SQRT( MAX( ZERO,
 | |
|      $                                         ONE-T*AQOAP*AAPQ1 ) )
 | |
| *
 | |
|                                     CALL CROT( M, A(1,p), 1, A(1,q), 1,
 | |
|      $                                          CS, CONJG(OMPQ)*SN )
 | |
|                                     IF( RSVEC ) THEN
 | |
|                                         CALL CROT( MVL, V(1,p), 1,
 | |
|      $                                  V(1,q), 1, CS, CONJG(OMPQ)*SN )
 | |
|                                     END IF
 | |
|                                  END IF
 | |
|                                  D(p) = -D(q) * OMPQ
 | |
| *
 | |
|                               ELSE
 | |
| *              .. have to use modified Gram-Schmidt like transformation
 | |
|                                IF( AAPP.GT.AAQQ ) THEN
 | |
|                                     CALL CCOPY( M, A( 1, p ), 1,
 | |
|      $                                          WORK, 1 )
 | |
|                                     CALL CLASCL( 'G', 0, 0, AAPP, ONE,
 | |
|      $                                           M, 1, WORK,LDA,
 | |
|      $                                           IERR )
 | |
|                                     CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
 | |
|      $                                           M, 1, A( 1, q ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     CALL CAXPY( M, -AAPQ, WORK,
 | |
|      $                                          1, A( 1, q ), 1 )
 | |
|                                     CALL CLASCL( 'G', 0, 0, ONE, AAQQ,
 | |
|      $                                           M, 1, A( 1, q ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | |
|      $                                         ONE-AAPQ1*AAPQ1 ) )
 | |
|                                     MXSINJ = MAX( MXSINJ, SFMIN )
 | |
|                                ELSE
 | |
|                                    CALL CCOPY( M, A( 1, q ), 1,
 | |
|      $                                          WORK, 1 )
 | |
|                                     CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
 | |
|      $                                           M, 1, WORK,LDA,
 | |
|      $                                           IERR )
 | |
|                                     CALL CLASCL( 'G', 0, 0, AAPP, ONE,
 | |
|      $                                           M, 1, A( 1, p ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     CALL CAXPY( M, -CONJG(AAPQ),
 | |
|      $                                   WORK, 1, A( 1, p ), 1 )
 | |
|                                     CALL CLASCL( 'G', 0, 0, ONE, AAPP,
 | |
|      $                                           M, 1, A( 1, p ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     SVA( p ) = AAPP*SQRT( MAX( ZERO,
 | |
|      $                                         ONE-AAPQ1*AAPQ1 ) )
 | |
|                                     MXSINJ = MAX( MXSINJ, SFMIN )
 | |
|                                END IF
 | |
|                               END IF
 | |
| *           END IF ROTOK THEN ... ELSE
 | |
| *
 | |
| *           In the case of cancellation in updating SVA(q), SVA(p)
 | |
| *           .. recompute SVA(q), SVA(p)
 | |
|                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
 | |
|      $                            THEN
 | |
|                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
 | |
|      $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
 | |
|                                     SVA( q ) = SCNRM2( M, A( 1, q ), 1)
 | |
|                                   ELSE
 | |
|                                     T = ZERO
 | |
|                                     AAQQ = ONE
 | |
|                                     CALL CLASSQ( M, A( 1, q ), 1, T,
 | |
|      $                                           AAQQ )
 | |
|                                     SVA( q ) = T*SQRT( AAQQ )
 | |
|                                  END IF
 | |
|                               END IF
 | |
|                               IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
 | |
|                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
 | |
|      $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
 | |
|                                     AAPP = SCNRM2( M, A( 1, p ), 1 )
 | |
|                                  ELSE
 | |
|                                     T = ZERO
 | |
|                                     AAPP = ONE
 | |
|                                     CALL CLASSQ( M, A( 1, p ), 1, T,
 | |
|      $                                           AAPP )
 | |
|                                     AAPP = T*SQRT( AAPP )
 | |
|                                  END IF
 | |
|                                  SVA( p ) = AAPP
 | |
|                               END IF
 | |
| *              end of OK rotation
 | |
|                            ELSE
 | |
|                               NOTROT = NOTROT + 1
 | |
| *[RTD]      SKIPPED  = SKIPPED  + 1
 | |
|                               PSKIPPED = PSKIPPED + 1
 | |
|                               IJBLSK = IJBLSK + 1
 | |
|                            END IF
 | |
|                         ELSE
 | |
|                            NOTROT = NOTROT + 1
 | |
|                            PSKIPPED = PSKIPPED + 1
 | |
|                            IJBLSK = IJBLSK + 1
 | |
|                         END IF
 | |
| *
 | |
|                         IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
 | |
|      $                      THEN
 | |
|                            SVA( p ) = AAPP
 | |
|                            NOTROT = 0
 | |
|                            GO TO 2011
 | |
|                         END IF
 | |
|                         IF( ( i.LE.SWBAND ) .AND.
 | |
|      $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
 | |
|                            AAPP = -AAPP
 | |
|                            NOTROT = 0
 | |
|                            GO TO 2203
 | |
|                         END IF
 | |
| *
 | |
|  2200                CONTINUE
 | |
| *        end of the q-loop
 | |
|  2203                CONTINUE
 | |
| *
 | |
|                      SVA( p ) = AAPP
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
|                      IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
 | |
|      $                   MIN( jgl+KBL-1, N ) - jgl + 1
 | |
|                      IF( AAPP.LT.ZERO )NOTROT = 0
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|  2100          CONTINUE
 | |
| *     end of the p-loop
 | |
|  2010       CONTINUE
 | |
| *     end of the jbc-loop
 | |
|  2011       CONTINUE
 | |
| *2011 bailed out of the jbc-loop
 | |
|             DO 2012 p = igl, MIN( igl+KBL-1, N )
 | |
|                SVA( p ) = ABS( SVA( p ) )
 | |
|  2012       CONTINUE
 | |
| ***
 | |
|  2000    CONTINUE
 | |
| *2000 :: end of the ibr-loop
 | |
| *
 | |
| *     .. update SVA(N)
 | |
|          IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
 | |
|      $       THEN
 | |
|             SVA( N ) = SCNRM2( M, A( 1, N ), 1 )
 | |
|          ELSE
 | |
|             T = ZERO
 | |
|             AAPP = ONE
 | |
|             CALL CLASSQ( M, A( 1, N ), 1, T, AAPP )
 | |
|             SVA( N ) = T*SQRT( AAPP )
 | |
|          END IF
 | |
| *
 | |
| *     Additional steering devices
 | |
| *
 | |
|          IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
 | |
|      $       ( ISWROT.LE.N ) ) )SWBAND = i
 | |
| *
 | |
|          IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( REAL( N ) )*
 | |
|      $       TOL ) .AND. ( REAL( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
 | |
|             GO TO 1994
 | |
|          END IF
 | |
| *
 | |
|          IF( NOTROT.GE.EMPTSW )GO TO 1994
 | |
| *
 | |
|  1993 CONTINUE
 | |
| *     end i=1:NSWEEP loop
 | |
| *
 | |
| * #:( Reaching this point means that the procedure has not converged.
 | |
|       INFO = NSWEEP - 1
 | |
|       GO TO 1995
 | |
| *
 | |
|  1994 CONTINUE
 | |
| * #:) Reaching this point means numerical convergence after the i-th
 | |
| *     sweep.
 | |
| *
 | |
|       INFO = 0
 | |
| * #:) INFO = 0 confirms successful iterations.
 | |
|  1995 CONTINUE
 | |
| *
 | |
| *     Sort the vector SVA() of column norms.
 | |
|       DO 5991 p = 1, N - 1
 | |
|          q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
 | |
|          IF( p.NE.q ) THEN
 | |
|             TEMP1 = SVA( p )
 | |
|             SVA( p ) = SVA( q )
 | |
|             SVA( q ) = TEMP1
 | |
|             AAPQ = D( p )
 | |
|             D( p ) = D( q )
 | |
|             D( q ) = AAPQ
 | |
|             CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
 | |
|             IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
 | |
|          END IF
 | |
|  5991 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *     ..
 | |
| *     .. END OF CGSVJ0
 | |
| *     ..
 | |
|       END
 |