422 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			422 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
C> \brief \b ZGEQRF VARIANT: left-looking Level 3 BLAS of the algorithm.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGEQRF ( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
C>\details \b Purpose:
 | 
						|
C>\verbatim
 | 
						|
C>
 | 
						|
C> ZGEQRF computes a QR factorization of a complex M-by-N matrix A:
 | 
						|
C> A = Q * R.
 | 
						|
C>
 | 
						|
C> This is the left-looking Level 3 BLAS version of the algorithm.
 | 
						|
C>
 | 
						|
C>\endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
C> \param[in] M
 | 
						|
C> \verbatim
 | 
						|
C>          M is INTEGER
 | 
						|
C>          The number of rows of the matrix A.  M >= 0.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[in] N
 | 
						|
C> \verbatim
 | 
						|
C>          N is INTEGER
 | 
						|
C>          The number of columns of the matrix A.  N >= 0.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[in,out] A
 | 
						|
C> \verbatim
 | 
						|
C>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
C>          On entry, the M-by-N matrix A.
 | 
						|
C>          On exit, the elements on and above the diagonal of the array
 | 
						|
C>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
 | 
						|
C>          upper triangular if m >= n); the elements below the diagonal,
 | 
						|
C>          with the array TAU, represent the orthogonal matrix Q as a
 | 
						|
C>          product of min(m,n) elementary reflectors (see Further
 | 
						|
C>          Details).
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[in] LDA
 | 
						|
C> \verbatim
 | 
						|
C>          LDA is INTEGER
 | 
						|
C>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[out] TAU
 | 
						|
C> \verbatim
 | 
						|
C>          TAU is COMPLEX*16 array, dimension (min(M,N))
 | 
						|
C>          The scalar factors of the elementary reflectors (see Further
 | 
						|
C>          Details).
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[out] WORK
 | 
						|
C> \verbatim
 | 
						|
C>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | 
						|
C>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[in] LWORK
 | 
						|
C> \verbatim
 | 
						|
C>          LWORK is INTEGER
 | 
						|
C> \endverbatim
 | 
						|
C> \verbatim
 | 
						|
C>          The dimension of the array WORK. LWORK >= 1 if MIN(M,N) = 0,
 | 
						|
C>          otherwise the dimension can be divided into three parts.
 | 
						|
C> \endverbatim
 | 
						|
C> \verbatim
 | 
						|
C>          1) The part for the triangular factor T. If the very last T is not bigger
 | 
						|
C>             than any of the rest, then this part is NB x ceiling(K/NB), otherwise,
 | 
						|
C>             NB x (K-NT), where K = min(M,N) and NT is the dimension of the very last T
 | 
						|
C> \endverbatim
 | 
						|
C> \verbatim
 | 
						|
C>          2) The part for the very last T when T is bigger than any of the rest T.
 | 
						|
C>             The size of this part is NT x NT, where NT = K - ceiling ((K-NX)/NB) x NB,
 | 
						|
C>             where K = min(M,N), NX is calculated by
 | 
						|
C>                   NX = MAX( 0, ILAENV( 3, 'ZGEQRF', ' ', M, N, -1, -1 ) )
 | 
						|
C> \endverbatim
 | 
						|
C> \verbatim
 | 
						|
C>          3) The part for dlarfb is of size max((N-M)*K, (N-M)*NB, K*NB, NB*NB)
 | 
						|
C> \endverbatim
 | 
						|
C> \verbatim
 | 
						|
C>          So LWORK = part1 + part2 + part3
 | 
						|
C> \endverbatim
 | 
						|
C> \verbatim
 | 
						|
C>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
C>          only calculates the optimal size of the WORK array, returns
 | 
						|
C>          this value as the first entry of the WORK array, and no error
 | 
						|
C>          message related to LWORK is issued by XERBLA.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[out] INFO
 | 
						|
C> \verbatim
 | 
						|
C>          INFO is INTEGER
 | 
						|
C>          = 0:  successful exit
 | 
						|
C>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
C> \author Univ. of Tennessee
 | 
						|
C> \author Univ. of California Berkeley
 | 
						|
C> \author Univ. of Colorado Denver
 | 
						|
C> \author NAG Ltd.
 | 
						|
*
 | 
						|
C> \date December 2016
 | 
						|
*
 | 
						|
C> \ingroup variantsGEcomputational
 | 
						|
*
 | 
						|
*  Further Details
 | 
						|
*  ===============
 | 
						|
C>\details \b Further \b Details
 | 
						|
C> \verbatim
 | 
						|
C>
 | 
						|
C>  The matrix Q is represented as a product of elementary reflectors
 | 
						|
C>
 | 
						|
C>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
 | 
						|
C>
 | 
						|
C>  Each H(i) has the form
 | 
						|
C>
 | 
						|
C>     H(i) = I - tau * v * v'
 | 
						|
C>
 | 
						|
C>  where tau is a real scalar, and v is a real vector with
 | 
						|
C>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
 | 
						|
C>  and tau in TAU(i).
 | 
						|
C>
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGEQRF ( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            I, IB, IINFO, IWS, J, K, LWKOPT, NB,
 | 
						|
     $                   NBMIN, NX, LBWORK, NT, LLWORK
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZGEQR2, ZLARFB, ZLARFT, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CEILING, MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
 | 
						|
      INFO = 0
 | 
						|
      NBMIN = 2
 | 
						|
      NX = 0
 | 
						|
      IWS = N
 | 
						|
      K = MIN( M, N )
 | 
						|
      NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
 | 
						|
 | 
						|
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
 | 
						|
*
 | 
						|
*        Determine when to cross over from blocked to unblocked code.
 | 
						|
*
 | 
						|
         NX = MAX( 0, ILAENV( 3, 'ZGEQRF', ' ', M, N, -1, -1 ) )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get NT, the size of the very last T, which is the left-over from in-between K-NX and K to K, eg.:
 | 
						|
*
 | 
						|
*            NB=3     2NB=6       K=10
 | 
						|
*            |        |           |
 | 
						|
*      1--2--3--4--5--6--7--8--9--10
 | 
						|
*                  |     \________/
 | 
						|
*               K-NX=5      NT=4
 | 
						|
*
 | 
						|
*     So here 4 x 4 is the last T stored in the workspace
 | 
						|
*
 | 
						|
      NT = K-CEILING(REAL(K-NX)/REAL(NB))*NB
 | 
						|
 | 
						|
*
 | 
						|
*     optimal workspace = space for dlarfb + space for normal T's + space for the last T
 | 
						|
*
 | 
						|
      LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB))
 | 
						|
      LLWORK = CEILING(REAL(LLWORK)/REAL(NB))
 | 
						|
 | 
						|
      IF( K.EQ.0 ) THEN
 | 
						|
 | 
						|
         LBWORK = 0
 | 
						|
         LWKOPT = 1
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
 | 
						|
      ELSE IF ( NT.GT.NB ) THEN
 | 
						|
 | 
						|
          LBWORK = K-NT
 | 
						|
*
 | 
						|
*         Optimal workspace for dlarfb = MAX(1,N)*NT
 | 
						|
*
 | 
						|
          LWKOPT = (LBWORK+LLWORK)*NB
 | 
						|
          WORK( 1 ) = (LWKOPT+NT*NT)
 | 
						|
 | 
						|
      ELSE
 | 
						|
 | 
						|
          LBWORK = CEILING(REAL(K)/REAL(NB))*NB
 | 
						|
          LWKOPT = (LBWORK+LLWORK-NB)*NB
 | 
						|
          WORK( 1 ) = LWKOPT
 | 
						|
 | 
						|
      END IF
 | 
						|
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF ( .NOT.LQUERY ) THEN
 | 
						|
         IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) )
 | 
						|
     $      INFO = -7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGEQRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( K.EQ.0 ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
 | 
						|
 | 
						|
         IF( NX.LT.K ) THEN
 | 
						|
*
 | 
						|
*           Determine if workspace is large enough for blocked code.
 | 
						|
*
 | 
						|
            IF ( NT.LE.NB ) THEN
 | 
						|
                IWS = (LBWORK+LLWORK-NB)*NB
 | 
						|
            ELSE
 | 
						|
                IWS = (LBWORK+LLWORK)*NB+NT*NT
 | 
						|
            END IF
 | 
						|
 | 
						|
            IF( LWORK.LT.IWS ) THEN
 | 
						|
*
 | 
						|
*              Not enough workspace to use optimal NB:  reduce NB and
 | 
						|
*              determine the minimum value of NB.
 | 
						|
*
 | 
						|
               IF ( NT.LE.NB ) THEN
 | 
						|
                    NB = LWORK / (LLWORK+(LBWORK-NB))
 | 
						|
               ELSE
 | 
						|
                    NB = (LWORK-NT*NT)/(LBWORK+LLWORK)
 | 
						|
               END IF
 | 
						|
 | 
						|
               NBMIN = MAX( 2, ILAENV( 2, 'ZGEQRF', ' ', M, N, -1,
 | 
						|
     $                 -1 ) )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
 | 
						|
*
 | 
						|
*        Use blocked code initially
 | 
						|
*
 | 
						|
         DO 10 I = 1, K - NX, NB
 | 
						|
            IB = MIN( K-I+1, NB )
 | 
						|
*
 | 
						|
*           Update the current column using old T's
 | 
						|
*
 | 
						|
            DO 20 J = 1, I - NB, NB
 | 
						|
*
 | 
						|
*              Apply H' to A(J:M,I:I+IB-1) from the left
 | 
						|
*
 | 
						|
               CALL ZLARFB( 'Left', 'Transpose', 'Forward',
 | 
						|
     $                      'Columnwise', M-J+1, IB, NB,
 | 
						|
     $                      A( J, J ), LDA, WORK(J), LBWORK,
 | 
						|
     $                      A( J, I ), LDA, WORK(LBWORK*NB+NT*NT+1),
 | 
						|
     $                      IB)
 | 
						|
 | 
						|
20          CONTINUE
 | 
						|
*
 | 
						|
*           Compute the QR factorization of the current block
 | 
						|
*           A(I:M,I:I+IB-1)
 | 
						|
*
 | 
						|
            CALL ZGEQR2( M-I+1, IB, A( I, I ), LDA, TAU( I ),
 | 
						|
     $                        WORK(LBWORK*NB+NT*NT+1), IINFO )
 | 
						|
 | 
						|
            IF( I+IB.LE.N ) THEN
 | 
						|
*
 | 
						|
*              Form the triangular factor of the block reflector
 | 
						|
*              H = H(i) H(i+1) . . . H(i+ib-1)
 | 
						|
*
 | 
						|
               CALL ZLARFT( 'Forward', 'Columnwise', M-I+1, IB,
 | 
						|
     $                      A( I, I ), LDA, TAU( I ),
 | 
						|
     $                      WORK(I), LBWORK )
 | 
						|
*
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
         I = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Use unblocked code to factor the last or only block.
 | 
						|
*
 | 
						|
      IF( I.LE.K ) THEN
 | 
						|
 | 
						|
         IF ( I .NE. 1 )   THEN
 | 
						|
 | 
						|
             DO 30 J = 1, I - NB, NB
 | 
						|
*
 | 
						|
*                Apply H' to A(J:M,I:K) from the left
 | 
						|
*
 | 
						|
                 CALL ZLARFB( 'Left', 'Transpose', 'Forward',
 | 
						|
     $                       'Columnwise', M-J+1, K-I+1, NB,
 | 
						|
     $                       A( J, J ), LDA, WORK(J), LBWORK,
 | 
						|
     $                       A( J, I ), LDA, WORK(LBWORK*NB+NT*NT+1),
 | 
						|
     $                       K-I+1)
 | 
						|
30           CONTINUE
 | 
						|
 | 
						|
             CALL ZGEQR2( M-I+1, K-I+1, A( I, I ), LDA, TAU( I ),
 | 
						|
     $                   WORK(LBWORK*NB+NT*NT+1),IINFO )
 | 
						|
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*        Use unblocked code to factor the last or only block.
 | 
						|
*
 | 
						|
         CALL ZGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ),
 | 
						|
     $               WORK,IINFO )
 | 
						|
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
 | 
						|
 | 
						|
*
 | 
						|
*     Apply update to the column M+1:N when N > M
 | 
						|
*
 | 
						|
      IF ( M.LT.N .AND. I.NE.1) THEN
 | 
						|
*
 | 
						|
*         Form the last triangular factor of the block reflector
 | 
						|
*         H = H(i) H(i+1) . . . H(i+ib-1)
 | 
						|
*
 | 
						|
          IF ( NT .LE. NB ) THEN
 | 
						|
               CALL ZLARFT( 'Forward', 'Columnwise', M-I+1, K-I+1,
 | 
						|
     $                     A( I, I ), LDA, TAU( I ), WORK(I), LBWORK )
 | 
						|
          ELSE
 | 
						|
               CALL ZLARFT( 'Forward', 'Columnwise', M-I+1, K-I+1,
 | 
						|
     $                     A( I, I ), LDA, TAU( I ),
 | 
						|
     $                     WORK(LBWORK*NB+1), NT )
 | 
						|
          END IF
 | 
						|
 | 
						|
*
 | 
						|
*         Apply H' to A(1:M,M+1:N) from the left
 | 
						|
*
 | 
						|
          DO 40 J = 1, K-NX, NB
 | 
						|
 | 
						|
               IB = MIN( K-J+1, NB )
 | 
						|
 | 
						|
               CALL ZLARFB( 'Left', 'Transpose', 'Forward',
 | 
						|
     $                     'Columnwise', M-J+1, N-M, IB,
 | 
						|
     $                     A( J, J ), LDA, WORK(J), LBWORK,
 | 
						|
     $                     A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
 | 
						|
     $                     N-M)
 | 
						|
 | 
						|
40       CONTINUE
 | 
						|
 | 
						|
         IF ( NT.LE.NB ) THEN
 | 
						|
             CALL ZLARFB( 'Left', 'Transpose', 'Forward',
 | 
						|
     $                   'Columnwise', M-J+1, N-M, K-J+1,
 | 
						|
     $                   A( J, J ), LDA, WORK(J), LBWORK,
 | 
						|
     $                   A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
 | 
						|
     $                   N-M)
 | 
						|
         ELSE
 | 
						|
             CALL ZLARFB( 'Left', 'Transpose', 'Forward',
 | 
						|
     $                   'Columnwise', M-J+1, N-M, K-J+1,
 | 
						|
     $                   A( J, J ), LDA,
 | 
						|
     $                   WORK(LBWORK*NB+1),
 | 
						|
     $                   NT, A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
 | 
						|
     $                   N-M)
 | 
						|
         END IF
 | 
						|
 | 
						|
      END IF
 | 
						|
 | 
						|
      WORK( 1 ) = IWS
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGEQRF
 | 
						|
*
 | 
						|
      END
 |