1503 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1503 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static real c_b32 = 0.f;
 | |
| 
 | |
| /* > \brief \b SLAMCHF77 deprecated */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*      REAL FUNCTION SLAMCH( CMACH ) */
 | |
| 
 | |
| /*      CHARACTER          CMACH */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLAMCH determines single precision machine parameters. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] CMACH */
 | |
| /* > \verbatim */
 | |
| /* >          Specifies the value to be returned by SLAMCH: */
 | |
| /* >          = 'E' or 'e',   SLAMCH := eps */
 | |
| /* >          = 'S' or 's ,   SLAMCH := sfmin */
 | |
| /* >          = 'B' or 'b',   SLAMCH := base */
 | |
| /* >          = 'P' or 'p',   SLAMCH := eps*base */
 | |
| /* >          = 'N' or 'n',   SLAMCH := t */
 | |
| /* >          = 'R' or 'r',   SLAMCH := rnd */
 | |
| /* >          = 'M' or 'm',   SLAMCH := emin */
 | |
| /* >          = 'U' or 'u',   SLAMCH := rmin */
 | |
| /* >          = 'L' or 'l',   SLAMCH := emax */
 | |
| /* >          = 'O' or 'o',   SLAMCH := rmax */
 | |
| /* >          where */
 | |
| /* >          eps   = relative machine precision */
 | |
| /* >          sfmin = safe minimum, such that 1/sfmin does not overflow */
 | |
| /* >          base  = base of the machine */
 | |
| /* >          prec  = eps*base */
 | |
| /* >          t     = number of (base) digits in the mantissa */
 | |
| /* >          rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise */
 | |
| /* >          emin  = minimum exponent before (gradual) underflow */
 | |
| /* >          rmin  = underflow threshold - base**(emin-1) */
 | |
| /* >          emax  = largest exponent before overflow */
 | |
| /* >          rmax  = overflow threshold  - (base**emax)*(1-eps) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date April 2012 */
 | |
| 
 | |
| /* > \ingroup auxOTHERauxiliary */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| real slamch_(char *cmach)
 | |
| {
 | |
|     /* Initialized data */
 | |
| 
 | |
|     static logical first = TRUE_;
 | |
| 
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     real ret_val;
 | |
| 
 | |
|     /* Local variables */
 | |
|     static real base;
 | |
|     integer beta;
 | |
|     static real emin, prec, emax;
 | |
|     integer imin, imax;
 | |
|     logical lrnd;
 | |
|     static real rmin, rmax, t;
 | |
|     real rmach;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     real small;
 | |
|     static real sfmin;
 | |
|     extern /* Subroutine */ int slamc2_(integer *, integer *, logical *, real 
 | |
| 	    *, integer *, real *, integer *, real *);
 | |
|     integer it;
 | |
|     static real rnd, eps;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     April 2012 */
 | |
| 
 | |
| 
 | |
|     if (first) {
 | |
| 	slamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
 | |
| 	base = (real) beta;
 | |
| 	t = (real) it;
 | |
| 	if (lrnd) {
 | |
| 	    rnd = 1.f;
 | |
| 	    i__1 = 1 - it;
 | |
| 	    eps = pow_ri(&base, &i__1) / 2;
 | |
| 	} else {
 | |
| 	    rnd = 0.f;
 | |
| 	    i__1 = 1 - it;
 | |
| 	    eps = pow_ri(&base, &i__1);
 | |
| 	}
 | |
| 	prec = eps * base;
 | |
| 	emin = (real) imin;
 | |
| 	emax = (real) imax;
 | |
| 	sfmin = rmin;
 | |
| 	small = 1.f / rmax;
 | |
| 	if (small >= sfmin) {
 | |
| 
 | |
| /*           Use SMALL plus a bit, to avoid the possibility of rounding */
 | |
| /*           causing overflow when computing  1/sfmin. */
 | |
| 
 | |
| 	    sfmin = small * (eps + 1.f);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (lsame_(cmach, "E")) {
 | |
| 	rmach = eps;
 | |
|     } else if (lsame_(cmach, "S")) {
 | |
| 	rmach = sfmin;
 | |
|     } else if (lsame_(cmach, "B")) {
 | |
| 	rmach = base;
 | |
|     } else if (lsame_(cmach, "P")) {
 | |
| 	rmach = prec;
 | |
|     } else if (lsame_(cmach, "N")) {
 | |
| 	rmach = t;
 | |
|     } else if (lsame_(cmach, "R")) {
 | |
| 	rmach = rnd;
 | |
|     } else if (lsame_(cmach, "M")) {
 | |
| 	rmach = emin;
 | |
|     } else if (lsame_(cmach, "U")) {
 | |
| 	rmach = rmin;
 | |
|     } else if (lsame_(cmach, "L")) {
 | |
| 	rmach = emax;
 | |
|     } else if (lsame_(cmach, "O")) {
 | |
| 	rmach = rmax;
 | |
|     }
 | |
| 
 | |
|     ret_val = rmach;
 | |
|     first = FALSE_;
 | |
|     return ret_val;
 | |
| 
 | |
| /*     End of SLAMCH */
 | |
| 
 | |
| } /* slamch_ */
 | |
| 
 | |
| 
 | |
| /* *********************************************************************** */
 | |
| 
 | |
| /* > \brief \b SLAMC1 */
 | |
| /* > \details */
 | |
| /* > \b Purpose: */
 | |
| /* > \verbatim */
 | |
| /* > SLAMC1 determines the machine parameters given by BETA, T, RND, and */
 | |
| /* > IEEE1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          The base of the machine. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] T */
 | |
| /* > \verbatim */
 | |
| /* >          The number of ( BETA ) digits in the mantissa. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RND */
 | |
| /* > \verbatim */
 | |
| /* >          Specifies whether proper rounding  ( RND = .TRUE. )  or */
 | |
| /* >          chopping  ( RND = .FALSE. )  occurs in addition. This may not */
 | |
| /* >          be a reliable guide to the way in which the machine performs */
 | |
| /* >          its arithmetic. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IEEE1 */
 | |
| /* > \verbatim */
 | |
| /* >          Specifies whether rounding appears to be done in the IEEE */
 | |
| /* >          'round to nearest' style. */
 | |
| /* > \endverbatim */
 | |
| /* > \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. 
 | |
| of Colorado Denver and NAG Ltd.. */
 | |
| /* > \date April 2012 */
 | |
| /* > \ingroup auxOTHERauxiliary */
 | |
| /* > */
 | |
| /* > \details \b Further \b Details */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  The routine is based on the routine  ENVRON  by Malcolm and */
 | |
| /* >  incorporates suggestions by Gentleman and Marovich. See */
 | |
| /* > */
 | |
| /* >     Malcolm M. A. (1972) Algorithms to reveal properties of */
 | |
| /* >        floating-point arithmetic. Comms. of the ACM, 15, 949-951. */
 | |
| /* > */
 | |
| /* >     Gentleman W. M. and Marovich S. B. (1974) More on algorithms */
 | |
| /* >        that reveal properties of floating point arithmetic units. */
 | |
| /* >        Comms. of the ACM, 17, 276-277. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* Subroutine */ int slamc1_(integer *beta, integer *t, logical *rnd, logical 
 | |
| 	*ieee1)
 | |
| {
 | |
|     /* Initialized data */
 | |
| 
 | |
|     static logical first = TRUE_;
 | |
| 
 | |
|     /* System generated locals */
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     static logical lrnd;
 | |
|     real a, b, c__, f;
 | |
|     static integer lbeta;
 | |
|     real savec;
 | |
|     static logical lieee1;
 | |
|     real t1, t2;
 | |
|     extern real slamc3_(real *, real *);
 | |
|     static integer lt;
 | |
|     real one, qtr;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2010 */
 | |
| 
 | |
| /* ===================================================================== */
 | |
| 
 | |
| 
 | |
|     if (first) {
 | |
| 	one = 1.f;
 | |
| 
 | |
| /*        LBETA,  LIEEE1,  LT and  LRND  are the  local values  of  BETA, */
 | |
| /*        IEEE1, T and RND. */
 | |
| 
 | |
| /*        Throughout this routine  we use the function  SLAMC3  to ensure */
 | |
| /*        that relevant values are  stored and not held in registers,  or */
 | |
| /*        are not affected by optimizers. */
 | |
| 
 | |
| /*        Compute  a = 2.0**m  with the  smallest positive integer m such */
 | |
| /*        that */
 | |
| 
 | |
| /*           fl( a + 1.0 ) = a. */
 | |
| 
 | |
| 	a = 1.f;
 | |
| 	c__ = 1.f;
 | |
| 
 | |
| /* +       WHILE( C.EQ.ONE )LOOP */
 | |
| L10:
 | |
| 	if (c__ == one) {
 | |
| 	    a *= 2;
 | |
| 	    c__ = slamc3_(&a, &one);
 | |
| 	    r__1 = -a;
 | |
| 	    c__ = slamc3_(&c__, &r__1);
 | |
| 	    goto L10;
 | |
| 	}
 | |
| /* +       END WHILE */
 | |
| 
 | |
| /*        Now compute  b = 2.0**m  with the smallest positive integer m */
 | |
| /*        such that */
 | |
| 
 | |
| /*           fl( a + b ) .gt. a. */
 | |
| 
 | |
| 	b = 1.f;
 | |
| 	c__ = slamc3_(&a, &b);
 | |
| 
 | |
| /* +       WHILE( C.EQ.A )LOOP */
 | |
| L20:
 | |
| 	if (c__ == a) {
 | |
| 	    b *= 2;
 | |
| 	    c__ = slamc3_(&a, &b);
 | |
| 	    goto L20;
 | |
| 	}
 | |
| /* +       END WHILE */
 | |
| 
 | |
| /*        Now compute the base.  a and c  are neighbouring floating point */
 | |
| /*        numbers  in the  interval  ( beta**t, beta**( t + 1 ) )  and so */
 | |
| /*        their difference is beta. Adding 0.25 to c is to ensure that it */
 | |
| /*        is truncated to beta and not ( beta - 1 ). */
 | |
| 
 | |
| 	qtr = one / 4;
 | |
| 	savec = c__;
 | |
| 	r__1 = -a;
 | |
| 	c__ = slamc3_(&c__, &r__1);
 | |
| 	lbeta = c__ + qtr;
 | |
| 
 | |
| /*        Now determine whether rounding or chopping occurs,  by adding a */
 | |
| /*        bit  less  than  beta/2  and a  bit  more  than  beta/2  to  a. */
 | |
| 
 | |
| 	b = (real) lbeta;
 | |
| 	r__1 = b / 2;
 | |
| 	r__2 = -b / 100;
 | |
| 	f = slamc3_(&r__1, &r__2);
 | |
| 	c__ = slamc3_(&f, &a);
 | |
| 	if (c__ == a) {
 | |
| 	    lrnd = TRUE_;
 | |
| 	} else {
 | |
| 	    lrnd = FALSE_;
 | |
| 	}
 | |
| 	r__1 = b / 2;
 | |
| 	r__2 = b / 100;
 | |
| 	f = slamc3_(&r__1, &r__2);
 | |
| 	c__ = slamc3_(&f, &a);
 | |
| 	if (lrnd && c__ == a) {
 | |
| 	    lrnd = FALSE_;
 | |
| 	}
 | |
| 
 | |
| /*        Try and decide whether rounding is done in the  IEEE  'round to */
 | |
| /*        nearest' style. B/2 is half a unit in the last place of the two */
 | |
| /*        numbers A and SAVEC. Furthermore, A is even, i.e. has last  bit */
 | |
| /*        zero, and SAVEC is odd. Thus adding B/2 to A should not  change */
 | |
| /*        A, but adding B/2 to SAVEC should change SAVEC. */
 | |
| 
 | |
| 	r__1 = b / 2;
 | |
| 	t1 = slamc3_(&r__1, &a);
 | |
| 	r__1 = b / 2;
 | |
| 	t2 = slamc3_(&r__1, &savec);
 | |
| 	lieee1 = t1 == a && t2 > savec && lrnd;
 | |
| 
 | |
| /*        Now find  the  mantissa, t.  It should  be the  integer part of */
 | |
| /*        log to the base beta of a,  however it is safer to determine  t */
 | |
| /*        by powering.  So we find t as the smallest positive integer for */
 | |
| /*        which */
 | |
| 
 | |
| /*           fl( beta**t + 1.0 ) = 1.0. */
 | |
| 
 | |
| 	lt = 0;
 | |
| 	a = 1.f;
 | |
| 	c__ = 1.f;
 | |
| 
 | |
| /* +       WHILE( C.EQ.ONE )LOOP */
 | |
| L30:
 | |
| 	if (c__ == one) {
 | |
| 	    ++lt;
 | |
| 	    a *= lbeta;
 | |
| 	    c__ = slamc3_(&a, &one);
 | |
| 	    r__1 = -a;
 | |
| 	    c__ = slamc3_(&c__, &r__1);
 | |
| 	    goto L30;
 | |
| 	}
 | |
| /* +       END WHILE */
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *beta = lbeta;
 | |
|     *t = lt;
 | |
|     *rnd = lrnd;
 | |
|     *ieee1 = lieee1;
 | |
|     first = FALSE_;
 | |
|     return 0;
 | |
| 
 | |
| /*     End of SLAMC1 */
 | |
| 
 | |
| } /* slamc1_ */
 | |
| 
 | |
| 
 | |
| /* *********************************************************************** */
 | |
| 
 | |
| /* > \brief \b SLAMC2 */
 | |
| /* > \details */
 | |
| /* > \b Purpose: */
 | |
| /* > \verbatim */
 | |
| /* > SLAMC2 determines the machine parameters specified in its argument */
 | |
| /* > list. */
 | |
| /* > \endverbatim */
 | |
| /* > \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. 
 | |
| of Colorado Denver and NAG Ltd.. */
 | |
| /* > \date April 2012 */
 | |
| /* > \ingroup auxOTHERauxiliary */
 | |
| /* > */
 | |
| /* > \param[out] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          The base of the machine. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] T */
 | |
| /* > \verbatim */
 | |
| /* >          The number of ( BETA ) digits in the mantissa. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RND */
 | |
| /* > \verbatim */
 | |
| /* >          Specifies whether proper rounding  ( RND = .TRUE. )  or */
 | |
| /* >          chopping  ( RND = .FALSE. )  occurs in addition. This may not */
 | |
| /* >          be a reliable guide to the way in which the machine performs */
 | |
| /* >          its arithmetic. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] EPS */
 | |
| /* > \verbatim */
 | |
| /* >          The smallest positive number such that */
 | |
| /* >             fl( 1.0 - EPS ) .LT. 1.0, */
 | |
| /* >          where fl denotes the computed value. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] EMIN */
 | |
| /* > \verbatim */
 | |
| /* >          The minimum exponent before (gradual) underflow occurs. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RMIN */
 | |
| /* > \verbatim */
 | |
| /* >          The smallest normalized number for the machine, given by */
 | |
| /* >          BASE**( EMIN - 1 ), where  BASE  is the floating point value */
 | |
| /* >          of BETA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] EMAX */
 | |
| /* > \verbatim */
 | |
| /* >          The maximum exponent before overflow occurs. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RMAX */
 | |
| /* > \verbatim */
 | |
| /* >          The largest positive number for the machine, given by */
 | |
| /* >          BASE**EMAX * ( 1 - EPS ), where  BASE  is the floating point */
 | |
| /* >          value of BETA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \details \b Further \b Details */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  The computation of  EPS  is based on a routine PARANOIA by */
 | |
| /* >  W. Kahan of the University of California at Berkeley. */
 | |
| /* > \endverbatim */
 | |
| /* Subroutine */ int slamc2_(integer *beta, integer *t, logical *rnd, real *
 | |
| 	eps, integer *emin, real *rmin, integer *emax, real *rmax)
 | |
| {
 | |
|     /* Initialized data */
 | |
| 
 | |
|     static logical first = TRUE_;
 | |
|     static logical iwarn = FALSE_;
 | |
| 
 | |
|     /* Format strings */
 | |
|     static char fmt_9999[] = "(//\002 WARNING. The value EMIN may be incorre"
 | |
| 	    "ct:-\002,\002  EMIN = \002,i8,/\002 If, after inspection, the va"
 | |
| 	    "lue EMIN looks\002,\002 acceptable please comment out \002,/\002"
 | |
| 	    " the IF block as marked within the code of routine\002,\002 SLAM"
 | |
| 	    "C2,\002,/\002 otherwise supply EMIN explicitly.\002,/)";
 | |
| 
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     real r__1, r__2, r__3, r__4, r__5;
 | |
| 
 | |
|     /* Local variables */
 | |
|     logical ieee;
 | |
|     real half;
 | |
|     logical lrnd;
 | |
|     static real leps;
 | |
|     real zero, a, b, c__;
 | |
|     integer i__;
 | |
|     static integer lbeta;
 | |
|     real rbase;
 | |
|     static integer lemin, lemax;
 | |
|     integer gnmin;
 | |
|     real small;
 | |
|     integer gpmin;
 | |
|     real third;
 | |
|     static real lrmin, lrmax;
 | |
|     real sixth;
 | |
|     logical lieee1;
 | |
|     extern /* Subroutine */ int slamc1_(integer *, integer *, logical *, 
 | |
| 	    logical *);
 | |
|     extern real slamc3_(real *, real *);
 | |
|     extern /* Subroutine */ int slamc4_(integer *, real *, integer *), 
 | |
| 	    slamc5_(integer *, integer *, integer *, logical *, integer *, 
 | |
| 	    real *);
 | |
|     static integer lt;
 | |
|     integer ngnmin, ngpmin;
 | |
|     real one, two;
 | |
| 
 | |
|     /* Fortran I/O blocks */
 | |
|     static cilist io___58 = { 0, 6, 0, fmt_9999, 0 };
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2010 */
 | |
| 
 | |
| /* ===================================================================== */
 | |
| 
 | |
| 
 | |
|     if (first) {
 | |
| 	zero = 0.f;
 | |
| 	one = 1.f;
 | |
| 	two = 2.f;
 | |
| 
 | |
| /*        LBETA, LT, LRND, LEPS, LEMIN and LRMIN  are the local values of */
 | |
| /*        BETA, T, RND, EPS, EMIN and RMIN. */
 | |
| 
 | |
| /*        Throughout this routine  we use the function  SLAMC3  to ensure */
 | |
| /*        that relevant values are stored  and not held in registers,  or */
 | |
| /*        are not affected by optimizers. */
 | |
| 
 | |
| /*        SLAMC1 returns the parameters  LBETA, LT, LRND and LIEEE1. */
 | |
| 
 | |
| 	slamc1_(&lbeta, <, &lrnd, &lieee1);
 | |
| 
 | |
| /*        Start to find EPS. */
 | |
| 
 | |
| 	b = (real) lbeta;
 | |
| 	i__1 = -lt;
 | |
| 	a = pow_ri(&b, &i__1);
 | |
| 	leps = a;
 | |
| 
 | |
| /*        Try some tricks to see whether or not this is the correct  EPS. */
 | |
| 
 | |
| 	b = two / 3;
 | |
| 	half = one / 2;
 | |
| 	r__1 = -half;
 | |
| 	sixth = slamc3_(&b, &r__1);
 | |
| 	third = slamc3_(&sixth, &sixth);
 | |
| 	r__1 = -half;
 | |
| 	b = slamc3_(&third, &r__1);
 | |
| 	b = slamc3_(&b, &sixth);
 | |
| 	b = abs(b);
 | |
| 	if (b < leps) {
 | |
| 	    b = leps;
 | |
| 	}
 | |
| 
 | |
| 	leps = 1.f;
 | |
| 
 | |
| /* +       WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */
 | |
| L10:
 | |
| 	if (leps > b && b > zero) {
 | |
| 	    leps = b;
 | |
| 	    r__1 = half * leps;
 | |
| /* Computing 5th power */
 | |
| 	    r__3 = two, r__4 = r__3, r__3 *= r__3;
 | |
| /* Computing 2nd power */
 | |
| 	    r__5 = leps;
 | |
| 	    r__2 = r__4 * (r__3 * r__3) * (r__5 * r__5);
 | |
| 	    c__ = slamc3_(&r__1, &r__2);
 | |
| 	    r__1 = -c__;
 | |
| 	    c__ = slamc3_(&half, &r__1);
 | |
| 	    b = slamc3_(&half, &c__);
 | |
| 	    r__1 = -b;
 | |
| 	    c__ = slamc3_(&half, &r__1);
 | |
| 	    b = slamc3_(&half, &c__);
 | |
| 	    goto L10;
 | |
| 	}
 | |
| /* +       END WHILE */
 | |
| 
 | |
| 	if (a < leps) {
 | |
| 	    leps = a;
 | |
| 	}
 | |
| 
 | |
| /*        Computation of EPS complete. */
 | |
| 
 | |
| /*        Now find  EMIN.  Let A = + or - 1, and + or - (1 + BASE**(-3)). */
 | |
| /*        Keep dividing  A by BETA until (gradual) underflow occurs. This */
 | |
| /*        is detected when we cannot recover the previous A. */
 | |
| 
 | |
| 	rbase = one / lbeta;
 | |
| 	small = one;
 | |
| 	for (i__ = 1; i__ <= 3; ++i__) {
 | |
| 	    r__1 = small * rbase;
 | |
| 	    small = slamc3_(&r__1, &zero);
 | |
| /* L20: */
 | |
| 	}
 | |
| 	a = slamc3_(&one, &small);
 | |
| 	slamc4_(&ngpmin, &one, &lbeta);
 | |
| 	r__1 = -one;
 | |
| 	slamc4_(&ngnmin, &r__1, &lbeta);
 | |
| 	slamc4_(&gpmin, &a, &lbeta);
 | |
| 	r__1 = -a;
 | |
| 	slamc4_(&gnmin, &r__1, &lbeta);
 | |
| 	ieee = FALSE_;
 | |
| 
 | |
| 	if (ngpmin == ngnmin && gpmin == gnmin) {
 | |
| 	    if (ngpmin == gpmin) {
 | |
| 		lemin = ngpmin;
 | |
| /*            ( Non twos-complement machines, no gradual underflow; */
 | |
| /*              e.g.,  VAX ) */
 | |
| 	    } else if (gpmin - ngpmin == 3) {
 | |
| 		lemin = ngpmin - 1 + lt;
 | |
| 		ieee = TRUE_;
 | |
| /*            ( Non twos-complement machines, with gradual underflow; */
 | |
| /*              e.g., IEEE standard followers ) */
 | |
| 	    } else {
 | |
| 		lemin = f2cmin(ngpmin,gpmin);
 | |
| /*            ( A guess; no known machine ) */
 | |
| 		iwarn = TRUE_;
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ngpmin == gpmin && ngnmin == gnmin) {
 | |
| 	    if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) {
 | |
| 		lemin = f2cmax(ngpmin,ngnmin);
 | |
| /*            ( Twos-complement machines, no gradual underflow; */
 | |
| /*              e.g., CYBER 205 ) */
 | |
| 	    } else {
 | |
| 		lemin = f2cmin(ngpmin,ngnmin);
 | |
| /*            ( A guess; no known machine ) */
 | |
| 		iwarn = TRUE_;
 | |
| 	    }
 | |
| 
 | |
| 	} else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin)
 | |
| 		 {
 | |
| 	    if (gpmin - f2cmin(ngpmin,ngnmin) == 3) {
 | |
| 		lemin = f2cmax(ngpmin,ngnmin) - 1 + lt;
 | |
| /*            ( Twos-complement machines with gradual underflow; */
 | |
| /*              no known machine ) */
 | |
| 	    } else {
 | |
| 		lemin = f2cmin(ngpmin,ngnmin);
 | |
| /*            ( A guess; no known machine ) */
 | |
| 		iwarn = TRUE_;
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| /* Computing MIN */
 | |
| 	    i__1 = f2cmin(ngpmin,ngnmin), i__1 = f2cmin(i__1,gpmin);
 | |
| 	    lemin = f2cmin(i__1,gnmin);
 | |
| /*         ( A guess; no known machine ) */
 | |
| 	    iwarn = TRUE_;
 | |
| 	}
 | |
| 	first = FALSE_;
 | |
| /* ** */
 | |
| /* Comment out this if block if EMIN is ok */
 | |
| /*
 | |
|   if (iwarn) {
 | |
| 	    first = TRUE_;
 | |
| 	    s_wsfe(&io___58);
 | |
| 	    do_fio(&c__1, (char *)&lemin, (ftnlen)sizeof(integer));
 | |
| 	    e_wsfe();
 | |
| 	}
 | |
| */
 | |
| /* ** */
 | |
| 
 | |
| /*        Assume IEEE arithmetic if we found denormalised  numbers above, */
 | |
| /*        or if arithmetic seems to round in the  IEEE style,  determined */
 | |
| /*        in routine SLAMC1. A true IEEE machine should have both  things */
 | |
| /*        true; however, faulty machines may have one or the other. */
 | |
| 
 | |
| 	ieee = ieee || lieee1;
 | |
| 
 | |
| /*        Compute  RMIN by successive division by  BETA. We could compute */
 | |
| /*        RMIN as BASE**( EMIN - 1 ),  but some machines underflow during */
 | |
| /*        this computation. */
 | |
| 
 | |
| 	lrmin = 1.f;
 | |
| 	i__1 = 1 - lemin;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    r__1 = lrmin * rbase;
 | |
| 	    lrmin = slamc3_(&r__1, &zero);
 | |
| /* L30: */
 | |
| 	}
 | |
| 
 | |
| /*        Finally, call SLAMC5 to compute EMAX and RMAX. */
 | |
| 
 | |
| 	slamc5_(&lbeta, <, &lemin, &ieee, &lemax, &lrmax);
 | |
|     }
 | |
| 
 | |
|     *beta = lbeta;
 | |
|     *t = lt;
 | |
|     *rnd = lrnd;
 | |
|     *eps = leps;
 | |
|     *emin = lemin;
 | |
|     *rmin = lrmin;
 | |
|     *emax = lemax;
 | |
|     *rmax = lrmax;
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| 
 | |
| /*     End of SLAMC2 */
 | |
| 
 | |
| } /* slamc2_ */
 | |
| 
 | |
| 
 | |
| /* *********************************************************************** */
 | |
| 
 | |
| /* > \brief \b SLAMC3 */
 | |
| /* > \details */
 | |
| /* > \b Purpose: */
 | |
| /* > \verbatim */
 | |
| /* > SLAMC3  is intended to force  A  and  B  to be stored prior to doing */
 | |
| /* > the addition of  A  and  B ,  for use in situations where optimizers */
 | |
| /* > might hold one of these in a register. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          The values A and B. */
 | |
| /* > \endverbatim */
 | |
| real slamc3_(real *a, real *b)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     real ret_val;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2010 */
 | |
| 
 | |
| /* ===================================================================== */
 | |
| 
 | |
| 
 | |
|     ret_val = *a + *b;
 | |
| 
 | |
|     return ret_val;
 | |
| 
 | |
| /*     End of SLAMC3 */
 | |
| 
 | |
| } /* slamc3_ */
 | |
| 
 | |
| 
 | |
| /* *********************************************************************** */
 | |
| 
 | |
| /* > \brief \b SLAMC4 */
 | |
| /* > \details */
 | |
| /* > \b Purpose: */
 | |
| /* > \verbatim */
 | |
| /* > SLAMC4 is a service routine for SLAMC2. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] EMIN */
 | |
| /* > \verbatim */
 | |
| /* >          The minimum exponent before (gradual) underflow, computed by */
 | |
| /* >          setting A = START and dividing by BASE until the previous A */
 | |
| /* >          can not be recovered. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] START */
 | |
| /* > \verbatim */
 | |
| /* >          The starting point for determining EMIN. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] BASE */
 | |
| /* > \verbatim */
 | |
| /* >          The base of the machine. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* Subroutine */ int slamc4_(integer *emin, real *start, integer *base)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     real r__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real zero, a;
 | |
|     integer i__;
 | |
|     real rbase, b1, b2, c1, c2, d1, d2;
 | |
|     extern real slamc3_(real *, real *);
 | |
|     real one;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2010 */
 | |
| 
 | |
| /* ===================================================================== */
 | |
| 
 | |
| 
 | |
|     a = *start;
 | |
|     one = 1.f;
 | |
|     rbase = one / *base;
 | |
|     zero = 0.f;
 | |
|     *emin = 1;
 | |
|     r__1 = a * rbase;
 | |
|     b1 = slamc3_(&r__1, &zero);
 | |
|     c1 = a;
 | |
|     c2 = a;
 | |
|     d1 = a;
 | |
|     d2 = a;
 | |
| /* +    WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND. */
 | |
| /*    $       ( D1.EQ.A ).AND.( D2.EQ.A )      )LOOP */
 | |
| L10:
 | |
|     if (c1 == a && c2 == a && d1 == a && d2 == a) {
 | |
| 	--(*emin);
 | |
| 	a = b1;
 | |
| 	r__1 = a / *base;
 | |
| 	b1 = slamc3_(&r__1, &zero);
 | |
| 	r__1 = b1 * *base;
 | |
| 	c1 = slamc3_(&r__1, &zero);
 | |
| 	d1 = zero;
 | |
| 	i__1 = *base;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    d1 += b1;
 | |
| /* L20: */
 | |
| 	}
 | |
| 	r__1 = a * rbase;
 | |
| 	b2 = slamc3_(&r__1, &zero);
 | |
| 	r__1 = b2 / rbase;
 | |
| 	c2 = slamc3_(&r__1, &zero);
 | |
| 	d2 = zero;
 | |
| 	i__1 = *base;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    d2 += b2;
 | |
| /* L30: */
 | |
| 	}
 | |
| 	goto L10;
 | |
|     }
 | |
| /* +    END WHILE */
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of SLAMC4 */
 | |
| 
 | |
| } /* slamc4_ */
 | |
| 
 | |
| 
 | |
| /* *********************************************************************** */
 | |
| 
 | |
| /* > \brief \b SLAMC5 */
 | |
| /* > \details */
 | |
| /* > \b Purpose: */
 | |
| /* > \verbatim */
 | |
| /* > SLAMC5 attempts to compute RMAX, the largest machine floating-point */
 | |
| /* > number, without overflow.  It assumes that EMAX + abs(EMIN) sum */
 | |
| /* > approximately to a power of 2.  It will fail on machines where this */
 | |
| /* > assumption does not hold, for example, the Cyber 205 (EMIN = -28625, */
 | |
| /* > EMAX = 28718).  It will also fail if the value supplied for EMIN is */
 | |
| /* > too large (i.e. too close to zero), probably with overflow. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          The base of floating-point arithmetic. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] P */
 | |
| /* > \verbatim */
 | |
| /* >          The number of base BETA digits in the mantissa of a */
 | |
| /* >          floating-point value. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] EMIN */
 | |
| /* > \verbatim */
 | |
| /* >          The minimum exponent before (gradual) underflow. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IEEE */
 | |
| /* > \verbatim */
 | |
| /* >          A logical flag specifying whether or not the arithmetic */
 | |
| /* >          system is thought to comply with the IEEE standard. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] EMAX */
 | |
| /* > \verbatim */
 | |
| /* >          The largest exponent before overflow */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RMAX */
 | |
| /* > \verbatim */
 | |
| /* >          The largest machine floating-point number. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* Subroutine */ int slamc5_(integer *beta, integer *p, integer *emin, 
 | |
| 	logical *ieee, integer *emax, real *rmax)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     real r__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer lexp;
 | |
|     real oldy;
 | |
|     integer uexp, i__;
 | |
|     real y, z__;
 | |
|     integer nbits;
 | |
|     extern real slamc3_(real *, real *);
 | |
|     real recbas;
 | |
|     integer exbits, expsum, try__;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2010 */
 | |
| 
 | |
| /* ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     First compute LEXP and UEXP, two powers of 2 that bound */
 | |
| /*     abs(EMIN). We then assume that EMAX + abs(EMIN) will sum */
 | |
| /*     approximately to the bound that is closest to abs(EMIN). */
 | |
| /*     (EMAX is the exponent of the required number RMAX). */
 | |
| 
 | |
|     lexp = 1;
 | |
|     exbits = 1;
 | |
| L10:
 | |
|     try__ = lexp << 1;
 | |
|     if (try__ <= -(*emin)) {
 | |
| 	lexp = try__;
 | |
| 	++exbits;
 | |
| 	goto L10;
 | |
|     }
 | |
|     if (lexp == -(*emin)) {
 | |
| 	uexp = lexp;
 | |
|     } else {
 | |
| 	uexp = try__;
 | |
| 	++exbits;
 | |
|     }
 | |
| 
 | |
| /*     Now -LEXP is less than or equal to EMIN, and -UEXP is greater */
 | |
| /*     than or equal to EMIN. EXBITS is the number of bits needed to */
 | |
| /*     store the exponent. */
 | |
| 
 | |
|     if (uexp + *emin > -lexp - *emin) {
 | |
| 	expsum = lexp << 1;
 | |
|     } else {
 | |
| 	expsum = uexp << 1;
 | |
|     }
 | |
| 
 | |
| /*     EXPSUM is the exponent range, approximately equal to */
 | |
| /*     EMAX - EMIN + 1 . */
 | |
| 
 | |
|     *emax = expsum + *emin - 1;
 | |
|     nbits = exbits + 1 + *p;
 | |
| 
 | |
| /*     NBITS is the total number of bits needed to store a */
 | |
| /*     floating-point number. */
 | |
| 
 | |
|     if (nbits % 2 == 1 && *beta == 2) {
 | |
| 
 | |
| /*        Either there are an odd number of bits used to store a */
 | |
| /*        floating-point number, which is unlikely, or some bits are */
 | |
| /*        not used in the representation of numbers, which is possible, */
 | |
| /*        (e.g. Cray machines) or the mantissa has an implicit bit, */
 | |
| /*        (e.g. IEEE machines, Dec Vax machines), which is perhaps the */
 | |
| /*        most likely. We have to assume the last alternative. */
 | |
| /*        If this is true, then we need to reduce EMAX by one because */
 | |
| /*        there must be some way of representing zero in an implicit-bit */
 | |
| /*        system. On machines like Cray, we are reducing EMAX by one */
 | |
| /*        unnecessarily. */
 | |
| 
 | |
| 	--(*emax);
 | |
|     }
 | |
| 
 | |
|     if (*ieee) {
 | |
| 
 | |
| /*        Assume we are on an IEEE machine which reserves one exponent */
 | |
| /*        for infinity and NaN. */
 | |
| 
 | |
| 	--(*emax);
 | |
|     }
 | |
| 
 | |
| /*     Now create RMAX, the largest machine number, which should */
 | |
| /*     be equal to (1.0 - BETA**(-P)) * BETA**EMAX . */
 | |
| 
 | |
| /*     First compute 1.0 - BETA**(-P), being careful that the */
 | |
| /*     result is less than 1.0 . */
 | |
| 
 | |
|     recbas = 1.f / *beta;
 | |
|     z__ = *beta - 1.f;
 | |
|     y = 0.f;
 | |
|     i__1 = *p;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	z__ *= recbas;
 | |
| 	if (y < 1.f) {
 | |
| 	    oldy = y;
 | |
| 	}
 | |
| 	y = slamc3_(&y, &z__);
 | |
| /* L20: */
 | |
|     }
 | |
|     if (y >= 1.f) {
 | |
| 	y = oldy;
 | |
|     }
 | |
| 
 | |
| /*     Now multiply by BETA**EMAX to get RMAX. */
 | |
| 
 | |
|     i__1 = *emax;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	r__1 = y * *beta;
 | |
| 	y = slamc3_(&r__1, &c_b32);
 | |
| /* L30: */
 | |
|     }
 | |
| 
 | |
|     *rmax = y;
 | |
|     return 0;
 | |
| 
 | |
| /*     End of SLAMC5 */
 | |
| 
 | |
| } /* slamc5_ */
 | |
| 
 |