289 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			289 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
/***************************************************************************
 | 
						|
Copyright (c) 2013-2019, The OpenBLAS Project
 | 
						|
All rights reserved.
 | 
						|
Redistribution and use in source and binary forms, with or without
 | 
						|
modification, are permitted provided that the following conditions are
 | 
						|
met:
 | 
						|
1. Redistributions of source code must retain the above copyright
 | 
						|
notice, this list of conditions and the following disclaimer.
 | 
						|
2. Redistributions in binary form must reproduce the above copyright
 | 
						|
notice, this list of conditions and the following disclaimer in
 | 
						|
the documentation and/or other materials provided with the
 | 
						|
distribution.
 | 
						|
3. Neither the name of the OpenBLAS project nor the names of
 | 
						|
its contributors may be used to endorse or promote products
 | 
						|
derived from this software without specific prior written permission.
 | 
						|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
						|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
 | 
						|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | 
						|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | 
						|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 | 
						|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 *****************************************************************************/
 | 
						|
#include "common.h"
 | 
						|
#include <math.h>
 | 
						|
#include <altivec.h>
 | 
						|
 | 
						|
 | 
						|
#if defined(DOUBLE)
 | 
						|
    #define ABS fabs
 | 
						|
#else
 | 
						|
    #define ABS fabsf
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * Find  maximum index 
 | 
						|
 * Warning: requirements n>0  and n % 64 == 0
 | 
						|
 * @param n     
 | 
						|
 * @param x     pointer to the vector
 | 
						|
 * @param maxf  (out) maximum absolute value .( only for output )
 | 
						|
 * @return  index 
 | 
						|
 */
 | 
						|
static BLASLONG siamax_kernel_64(BLASLONG n, FLOAT *x, FLOAT *maxf) {
 | 
						|
    BLASLONG index;
 | 
						|
    BLASLONG i=0;
 | 
						|
    register __vector unsigned int static_index0 = {0,1,2,3};
 | 
						|
    register __vector unsigned int temp0 = {4,4,4, 4}; //temporary vector register
 | 
						|
    register __vector unsigned int temp1=  temp0<<1;  //{8,8,8,8}
 | 
						|
    register __vector unsigned int static_index1=static_index0 +temp0;//{4,5,6,7};
 | 
						|
    register __vector unsigned int static_index2=static_index0 +temp1;//{8,9,10,11};
 | 
						|
    register __vector unsigned int static_index3=static_index1 +temp1; //{12,13,14,15};
 | 
						|
    temp0=vec_xor(temp0,temp0);
 | 
						|
    temp1=temp1 <<1 ; //{16,16,16,16}
 | 
						|
    register __vector unsigned int quadruple_indices=temp0;//{0,0,0,0}
 | 
						|
    register __vector float quadruple_values={0,0,0,0};
 | 
						|
    register __vector float * v_ptrx=(__vector float *)x;
 | 
						|
    for(; i<n; i+=64){
 | 
						|
       //absolute temporary vectors
 | 
						|
       register __vector float v0=vec_abs(v_ptrx[0]);
 | 
						|
       register __vector float v1=vec_abs(v_ptrx[1]);
 | 
						|
       register __vector float v2=vec_abs(v_ptrx[2]);
 | 
						|
       register __vector float v3=vec_abs(v_ptrx[3]);
 | 
						|
       register __vector float v4=vec_abs(v_ptrx[4]);
 | 
						|
       register __vector float v5=vec_abs(v_ptrx[5]);
 | 
						|
       register __vector float v6=vec_abs(v_ptrx[6]);       
 | 
						|
       register __vector float v7=vec_abs(v_ptrx[7]);
 | 
						|
       //cmp quadruple pairs
 | 
						|
       register __vector bool int r1=vec_cmpgt(v1,v0);
 | 
						|
       register __vector bool int r2=vec_cmpgt(v3,v2);
 | 
						|
       register __vector bool int r3=vec_cmpgt(v5,v4);
 | 
						|
       register __vector bool int r4=vec_cmpgt(v7,v6);
 | 
						|
      
 | 
						|
       //select
 | 
						|
       register __vector unsigned int ind0_first= vec_sel(static_index0,static_index1,r1);
 | 
						|
       register __vector float vf0= vec_sel(v0,v1,r1);
 | 
						|
 | 
						|
       register __vector unsigned int ind1= vec_sel(static_index2,static_index3,r2);
 | 
						|
       register __vector float vf1= vec_sel(v2,v3,r2);
 | 
						|
 | 
						|
       register __vector unsigned int ind2= vec_sel(static_index0,static_index1,r3);
 | 
						|
       v0=vec_sel(v4,v5,r3);
 | 
						|
 | 
						|
       register __vector unsigned int ind3= vec_sel(static_index2,static_index3,r4);
 | 
						|
       v1=vec_sel(v6,v7,r4);
 | 
						|
 | 
						|
       // cmp selected
 | 
						|
        r1=vec_cmpgt(vf1,vf0);
 | 
						|
       r2=vec_cmpgt(v1,v0);
 | 
						|
 | 
						|
       v_ptrx+=8;
 | 
						|
       //select from above 
 | 
						|
       ind0_first= vec_sel(ind0_first,ind1,r1);
 | 
						|
       vf0= vec_sel(vf0,vf1,r1) ;
 | 
						|
 | 
						|
       ind2= vec_sel(ind2,ind3,r2);
 | 
						|
       vf1= vec_sel(v0,v1,r2);
 | 
						|
 | 
						|
       //second indices actually should be within [16,31] so ind2+16
 | 
						|
       ind2 +=temp1;
 | 
						|
       
 | 
						|
       //final cmp and select index and value for the first 32 values
 | 
						|
       r1=vec_cmpgt(vf1,vf0);
 | 
						|
       ind0_first = vec_sel(ind0_first,ind2,r1);
 | 
						|
       vf0= vec_sel(vf0,vf1,r1);
 | 
						|
 
 | 
						|
       ind0_first+=temp0; //get absolute index
 | 
						|
 | 
						|
       temp0+=temp1;
 | 
						|
       temp0+=temp1; //temp0+32
 | 
						|
       //second part of 32
 | 
						|
       // absolute temporary vectors
 | 
						|
       v0=vec_abs(v_ptrx[0]);
 | 
						|
       v1=vec_abs(v_ptrx[1]);
 | 
						|
       v2=vec_abs(v_ptrx[2]);
 | 
						|
       v3=vec_abs(v_ptrx[3]);
 | 
						|
       v4=vec_abs(v_ptrx[4]);
 | 
						|
       v5=vec_abs(v_ptrx[5]);
 | 
						|
       v6=vec_abs(v_ptrx[6]);       
 | 
						|
       v7=vec_abs(v_ptrx[7]);
 | 
						|
       //cmp quadruple pairs
 | 
						|
       r1=vec_cmpgt(v1,v0);
 | 
						|
       r2=vec_cmpgt(v3,v2);
 | 
						|
       r3=vec_cmpgt(v5,v4);
 | 
						|
       r4=vec_cmpgt(v7,v6);
 | 
						|
       //select
 | 
						|
       register __vector unsigned int ind0_second= vec_sel(static_index0,static_index1,r1);
 | 
						|
       register __vector float vv0= vec_sel(v0,v1,r1);
 | 
						|
 | 
						|
       ind1= vec_sel(static_index2,static_index3,r2);
 | 
						|
       register __vector float vv1= vec_sel(v2,v3,r2);
 | 
						|
 | 
						|
       ind2= vec_sel(static_index0,static_index1,r3);
 | 
						|
       v0=vec_sel(v4,v5,r3);
 | 
						|
 | 
						|
       ind3= vec_sel(static_index2,static_index3,r4);
 | 
						|
       v1=vec_sel(v6,v7,r4);
 | 
						|
 | 
						|
       // cmp selected
 | 
						|
       r1=vec_cmpgt(vv1,vv0);
 | 
						|
       r2=vec_cmpgt(v1,v0);
 | 
						|
 | 
						|
       v_ptrx+=8;
 | 
						|
       //select from above 
 | 
						|
       ind0_second= vec_sel(ind0_second,ind1,r1);
 | 
						|
       vv0= vec_sel(vv0,vv1,r1) ;
 | 
						|
 | 
						|
       ind2= vec_sel(ind2,ind3,r2);
 | 
						|
       vv1= vec_sel(v0,v1,r2) ;  
 | 
						|
 | 
						|
       //second indices actually should be within [16,31] so ind2+16
 | 
						|
       ind2 +=temp1;
 | 
						|
       
 | 
						|
       //final cmp and select index and value for the second 32 values
 | 
						|
       r1=vec_cmpgt(vv1,vv0);
 | 
						|
       ind0_second = vec_sel(ind0_second,ind2,r1);
 | 
						|
       vv0= vec_sel(vv0,vv1,r1);
 | 
						|
 | 
						|
       ind0_second+=temp0; //get absolute index
 | 
						|
    
 | 
						|
       //find final quadruple from 64 elements
 | 
						|
       r2=vec_cmpgt(vv0,vf0);
 | 
						|
       ind2 = vec_sel( ind0_first,ind0_second,r2);
 | 
						|
       vv0= vec_sel(vf0,vv0,r2);       
 | 
						|
 | 
						|
       //compare with old quadruple and update 
 | 
						|
       r3=vec_cmpgt(vv0,quadruple_values);
 | 
						|
       quadruple_indices = vec_sel( quadruple_indices,ind2,r3);
 | 
						|
       quadruple_values= vec_sel(quadruple_values,vv0,r3);      
 | 
						|
 | 
						|
       temp0+=temp1;
 | 
						|
       temp0+=temp1; //temp0+32
 | 
						|
 
 | 
						|
    }
 | 
						|
 | 
						|
    //now we have to chose from 4 values and 4 different indices
 | 
						|
    // we will compare pairwise if pairs are exactly the same we will choose minimum between index
 | 
						|
    // otherwise we will assign index of the maximum value
 | 
						|
    float a1,a2,a3,a4;
 | 
						|
    unsigned int i1,i2,i3,i4;
 | 
						|
    a1=vec_extract(quadruple_values,0);
 | 
						|
    a2=vec_extract(quadruple_values,1);
 | 
						|
    a3=vec_extract(quadruple_values,2);
 | 
						|
    a4=vec_extract(quadruple_values,3);
 | 
						|
    i1=vec_extract(quadruple_indices,0);
 | 
						|
    i2=vec_extract(quadruple_indices,1);
 | 
						|
    i3=vec_extract(quadruple_indices,2);
 | 
						|
    i4=vec_extract(quadruple_indices,3);
 | 
						|
    if(a1==a2){
 | 
						|
      index=i1>i2?i2:i1;
 | 
						|
    }else if(a2>a1){
 | 
						|
      index=i2;
 | 
						|
      a1=a2;
 | 
						|
    }else{
 | 
						|
       index= i1;
 | 
						|
    }
 | 
						|
 | 
						|
    if(a4==a3){
 | 
						|
      i1=i3>i4?i4:i3;
 | 
						|
    }else if(a4>a3){
 | 
						|
      i1=i4;
 | 
						|
      a3=a4;
 | 
						|
    }else{
 | 
						|
       i1= i3;
 | 
						|
    }
 | 
						|
 | 
						|
    if(a1==a3){
 | 
						|
       index=i1>index?index:i1;
 | 
						|
       *maxf=a1; 
 | 
						|
    }else if(a3>a1){
 | 
						|
       index=i1;
 | 
						|
       *maxf=a3;
 | 
						|
    }else{ 
 | 
						|
        *maxf=a1;
 | 
						|
    }
 | 
						|
    return index;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
BLASLONG CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x) {
 | 
						|
    BLASLONG i = 0;
 | 
						|
    BLASLONG j = 0;
 | 
						|
    FLOAT maxf = 0.0;
 | 
						|
    BLASLONG max = 0;
 | 
						|
 | 
						|
    if (n <= 0 || inc_x <= 0) return (max);
 | 
						|
 | 
						|
    if (inc_x == 1) {
 | 
						|
 | 
						|
        BLASLONG n1 = n & -64;
 | 
						|
        if (n1 > 0) {
 | 
						|
 | 
						|
            max = siamax_kernel_64(n1, x, &maxf);
 | 
						|
 | 
						|
            i = n1;
 | 
						|
        }
 | 
						|
 | 
						|
        while (i < n) {
 | 
						|
            if (ABS(x[i]) > maxf) {
 | 
						|
                max = i;
 | 
						|
                maxf = ABS(x[i]);
 | 
						|
            }
 | 
						|
            i++;
 | 
						|
        }
 | 
						|
        return (max + 1);
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
        BLASLONG n1 = n & -4;
 | 
						|
        while (j < n1) {
 | 
						|
 | 
						|
            if (ABS(x[i]) > maxf) {
 | 
						|
                max = j;
 | 
						|
                maxf = ABS(x[i]);
 | 
						|
            }
 | 
						|
            if (ABS(x[i + inc_x]) > maxf) {
 | 
						|
                max = j + 1;
 | 
						|
                maxf = ABS(x[i + inc_x]);
 | 
						|
            }
 | 
						|
            if (ABS(x[i + 2 * inc_x]) > maxf) {
 | 
						|
                max = j + 2;
 | 
						|
                maxf = ABS(x[i + 2 * inc_x]);
 | 
						|
            }
 | 
						|
            if (ABS(x[i + 3 * inc_x]) > maxf) {
 | 
						|
                max = j + 3;
 | 
						|
                maxf = ABS(x[i + 3 * inc_x]);
 | 
						|
            }
 | 
						|
 | 
						|
            i += inc_x * 4;
 | 
						|
 | 
						|
            j += 4;
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        while (j < n) {
 | 
						|
            if (ABS(x[i]) > maxf) {
 | 
						|
                max = j;
 | 
						|
                maxf = ABS(x[i]);
 | 
						|
            }
 | 
						|
            i += inc_x;
 | 
						|
            j++;
 | 
						|
        }
 | 
						|
        return (max + 1);
 | 
						|
    }
 | 
						|
}
 |