1245 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1245 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CCHKGG
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
| *                          TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1,
 | |
| *                          S2, P1, P2, U, LDU, V, Q, Z, ALPHA1, BETA1,
 | |
| *                          ALPHA3, BETA3, EVECTL, EVECTR, WORK, LWORK,
 | |
| *                          RWORK, LLWORK, RESULT, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            TSTDIF
 | |
| *       INTEGER            INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES
 | |
| *       REAL               THRESH, THRSHN
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * ), LLWORK( * )
 | |
| *       INTEGER            ISEED( 4 ), NN( * )
 | |
| *       REAL               RESULT( 15 ), RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), ALPHA1( * ), ALPHA3( * ),
 | |
| *      $                   B( LDA, * ), BETA1( * ), BETA3( * ),
 | |
| *      $                   EVECTL( LDU, * ), EVECTR( LDU, * ),
 | |
| *      $                   H( LDA, * ), P1( LDA, * ), P2( LDA, * ),
 | |
| *      $                   Q( LDU, * ), S1( LDA, * ), S2( LDA, * ),
 | |
| *      $                   T( LDA, * ), U( LDU, * ), V( LDU, * ),
 | |
| *      $                   WORK( * ), Z( LDU, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CCHKGG  checks the nonsymmetric generalized eigenvalue problem
 | |
| *> routines.
 | |
| *>                                H          H        H
 | |
| *> CGGHRD factors A and B as U H V  and U T V , where   means conjugate
 | |
| *> transpose, H is hessenberg, T is triangular and U and V are unitary.
 | |
| *>
 | |
| *>                                 H          H
 | |
| *> CHGEQZ factors H and T as  Q S Z  and Q P Z , where P and S are upper
 | |
| *> triangular and Q and Z are unitary.  It also computes the generalized
 | |
| *> eigenvalues (alpha(1),beta(1)),...,(alpha(n),beta(n)), where
 | |
| *> alpha(j)=S(j,j) and beta(j)=P(j,j) -- thus, w(j) = alpha(j)/beta(j)
 | |
| *> is a root of the generalized eigenvalue problem
 | |
| *>
 | |
| *>     det( A - w(j) B ) = 0
 | |
| *>
 | |
| *> and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent
 | |
| *> problem
 | |
| *>
 | |
| *>     det( m(j) A - B ) = 0
 | |
| *>
 | |
| *> CTGEVC computes the matrix L of left eigenvectors and the matrix R
 | |
| *> of right eigenvectors for the matrix pair ( S, P ).  In the
 | |
| *> description below,  l and r are left and right eigenvectors
 | |
| *> corresponding to the generalized eigenvalues (alpha,beta).
 | |
| *>
 | |
| *> When CCHKGG is called, a number of matrix "sizes" ("n's") and a
 | |
| *> number of matrix "types" are specified.  For each size ("n")
 | |
| *> and each type of matrix, one matrix will be generated and used
 | |
| *> to test the nonsymmetric eigenroutines.  For each matrix, 13
 | |
| *> tests will be performed.  The first twelve "test ratios" should be
 | |
| *> small -- O(1).  They will be compared with the threshold THRESH:
 | |
| *>
 | |
| *>                  H
 | |
| *> (1)   | A - U H V  | / ( |A| n ulp )
 | |
| *>
 | |
| *>                  H
 | |
| *> (2)   | B - U T V  | / ( |B| n ulp )
 | |
| *>
 | |
| *>               H
 | |
| *> (3)   | I - UU  | / ( n ulp )
 | |
| *>
 | |
| *>               H
 | |
| *> (4)   | I - VV  | / ( n ulp )
 | |
| *>
 | |
| *>                  H
 | |
| *> (5)   | H - Q S Z  | / ( |H| n ulp )
 | |
| *>
 | |
| *>                  H
 | |
| *> (6)   | T - Q P Z  | / ( |T| n ulp )
 | |
| *>
 | |
| *>               H
 | |
| *> (7)   | I - QQ  | / ( n ulp )
 | |
| *>
 | |
| *>               H
 | |
| *> (8)   | I - ZZ  | / ( n ulp )
 | |
| *>
 | |
| *> (9)   max over all left eigenvalue/-vector pairs (beta/alpha,l) of
 | |
| *>                           H
 | |
| *>       | (beta A - alpha B) l | / ( ulp max( |beta A|, |alpha B| ) )
 | |
| *>
 | |
| *> (10)  max over all left eigenvalue/-vector pairs (beta/alpha,l') of
 | |
| *>                           H
 | |
| *>       | (beta H - alpha T) l' | / ( ulp max( |beta H|, |alpha T| ) )
 | |
| *>
 | |
| *>       where the eigenvectors l' are the result of passing Q to
 | |
| *>       STGEVC and back transforming (JOB='B').
 | |
| *>
 | |
| *> (11)  max over all right eigenvalue/-vector pairs (beta/alpha,r) of
 | |
| *>
 | |
| *>       | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )
 | |
| *>
 | |
| *> (12)  max over all right eigenvalue/-vector pairs (beta/alpha,r') of
 | |
| *>
 | |
| *>       | (beta H - alpha T) r' | / ( ulp max( |beta H|, |alpha T| ) )
 | |
| *>
 | |
| *>       where the eigenvectors r' are the result of passing Z to
 | |
| *>       STGEVC and back transforming (JOB='B').
 | |
| *>
 | |
| *> The last three test ratios will usually be small, but there is no
 | |
| *> mathematical requirement that they be so.  They are therefore
 | |
| *> compared with THRESH only if TSTDIF is .TRUE.
 | |
| *>
 | |
| *> (13)  | S(Q,Z computed) - S(Q,Z not computed) | / ( |S| ulp )
 | |
| *>
 | |
| *> (14)  | P(Q,Z computed) - P(Q,Z not computed) | / ( |P| ulp )
 | |
| *>
 | |
| *> (15)  max( |alpha(Q,Z computed) - alpha(Q,Z not computed)|/|S| ,
 | |
| *>            |beta(Q,Z computed) - beta(Q,Z not computed)|/|P| ) / ulp
 | |
| *>
 | |
| *> In addition, the normalization of L and R are checked, and compared
 | |
| *> with the threshold THRSHN.
 | |
| *>
 | |
| *> Test Matrices
 | |
| *> ---- --------
 | |
| *>
 | |
| *> The sizes of the test matrices are specified by an array
 | |
| *> NN(1:NSIZES); the value of each element NN(j) specifies one size.
 | |
| *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
 | |
| *> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | |
| *> Currently, the list of possible types is:
 | |
| *>
 | |
| *> (1)  ( 0, 0 )         (a pair of zero matrices)
 | |
| *>
 | |
| *> (2)  ( I, 0 )         (an identity and a zero matrix)
 | |
| *>
 | |
| *> (3)  ( 0, I )         (an identity and a zero matrix)
 | |
| *>
 | |
| *> (4)  ( I, I )         (a pair of identity matrices)
 | |
| *>
 | |
| *>         t   t
 | |
| *> (5)  ( J , J  )       (a pair of transposed Jordan blocks)
 | |
| *>
 | |
| *>                                     t                ( I   0  )
 | |
| *> (6)  ( X, Y )         where  X = ( J   0  )  and Y = (      t )
 | |
| *>                                  ( 0   I  )          ( 0   J  )
 | |
| *>                       and I is a k x k identity and J a (k+1)x(k+1)
 | |
| *>                       Jordan block; k=(N-1)/2
 | |
| *>
 | |
| *> (7)  ( D, I )         where D is P*D1, P is a random unitary diagonal
 | |
| *>                       matrix (i.e., with random magnitude 1 entries
 | |
| *>                       on the diagonal), and D1=diag( 0, 1,..., N-1 )
 | |
| *>                       (i.e., a diagonal matrix with D1(1,1)=0,
 | |
| *>                       D1(2,2)=1, ..., D1(N,N)=N-1.)
 | |
| *> (8)  ( I, D )
 | |
| *>
 | |
| *> (9)  ( big*D, small*I ) where "big" is near overflow and small=1/big
 | |
| *>
 | |
| *> (10) ( small*D, big*I )
 | |
| *>
 | |
| *> (11) ( big*I, small*D )
 | |
| *>
 | |
| *> (12) ( small*I, big*D )
 | |
| *>
 | |
| *> (13) ( big*D, big*I )
 | |
| *>
 | |
| *> (14) ( small*D, small*I )
 | |
| *>
 | |
| *> (15) ( D1, D2 )        where D1=P*diag( 0, 0, 1, ..., N-3, 0 ) and
 | |
| *>                        D2=Q*diag( 0, N-3, N-4,..., 1, 0, 0 ), and
 | |
| *>                        P and Q are random unitary diagonal matrices.
 | |
| *>           t   t
 | |
| *> (16) U ( J , J ) V     where U and V are random unitary matrices.
 | |
| *>
 | |
| *> (17) U ( T1, T2 ) V    where T1 and T2 are upper triangular matrices
 | |
| *>                        with random O(1) entries above the diagonal
 | |
| *>                        and diagonal entries diag(T1) =
 | |
| *>                        P*( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
 | |
| *>                        Q*( 0, N-3, N-4,..., 1, 0, 0 )
 | |
| *>
 | |
| *> (18) U ( T1, T2 ) V    diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
 | |
| *>                        diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
 | |
| *>                        s = machine precision.
 | |
| *>
 | |
| *> (19) U ( T1, T2 ) V    diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
 | |
| *>                        diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
 | |
| *>
 | |
| *>                                                        N-5
 | |
| *> (20) U ( T1, T2 ) V    diag(T1)=( 0, 0, 1, 1, a, ..., a   =s, 0 )
 | |
| *>                        diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
 | |
| *>
 | |
| *> (21) U ( T1, T2 ) V    diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
 | |
| *>                        diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
 | |
| *>                        where r1,..., r(N-4) are random.
 | |
| *>
 | |
| *> (22) U ( big*T1, small*T2 ) V   diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
 | |
| *>                                 diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 | |
| *>
 | |
| *> (23) U ( small*T1, big*T2 ) V   diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
 | |
| *>                                 diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 | |
| *>
 | |
| *> (24) U ( small*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
 | |
| *>                                 diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 | |
| *>
 | |
| *> (25) U ( big*T1, big*T2 ) V     diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
 | |
| *>                                 diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 | |
| *>
 | |
| *> (26) U ( T1, T2 ) V     where T1 and T2 are random upper-triangular
 | |
| *>                         matrices.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NSIZES
 | |
| *> \verbatim
 | |
| *>          NSIZES is INTEGER
 | |
| *>          The number of sizes of matrices to use.  If it is zero,
 | |
| *>          CCHKGG does nothing.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER array, dimension (NSIZES)
 | |
| *>          An array containing the sizes to be used for the matrices.
 | |
| *>          Zero values will be skipped.  The values must be at least
 | |
| *>          zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NTYPES
 | |
| *> \verbatim
 | |
| *>          NTYPES is INTEGER
 | |
| *>          The number of elements in DOTYPE.   If it is zero, CCHKGG
 | |
| *>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | |
| *>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | |
| *>          defined, which is to use whatever matrix is in A.  This
 | |
| *>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | |
| *>          DOTYPE(MAXTYP+1) is .TRUE. .
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | |
| *>          matrix of that size and of type j will be generated.
 | |
| *>          If NTYPES is smaller than the maximum number of types
 | |
| *>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | |
| *>          MAXTYP will not be generated.  If NTYPES is larger
 | |
| *>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | |
| *>          will be ignored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry ISEED specifies the seed of the random number
 | |
| *>          generator. The array elements should be between 0 and 4095;
 | |
| *>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | |
| *>          be odd.  The random number generator uses a linear
 | |
| *>          congruential sequence limited to small integers, and so
 | |
| *>          should produce machine independent random numbers. The
 | |
| *>          values of ISEED are changed on exit, and can be used in the
 | |
| *>          next call to CCHKGG to continue the same random number
 | |
| *>          sequence.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is REAL
 | |
| *>          A test will count as "failed" if the "error", computed as
 | |
| *>          described above, exceeds THRESH.  Note that the error
 | |
| *>          is scaled to be O(1), so THRESH should be a reasonably
 | |
| *>          small multiple of 1, e.g., 10 or 100.  In particular,
 | |
| *>          it should not depend on the precision (single vs. double)
 | |
| *>          or the size of the matrix.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TSTDIF
 | |
| *> \verbatim
 | |
| *>          TSTDIF is LOGICAL
 | |
| *>          Specifies whether test ratios 13-15 will be computed and
 | |
| *>          compared with THRESH.
 | |
| *>          = .FALSE.: Only test ratios 1-12 will be computed and tested.
 | |
| *>                     Ratios 13-15 will be set to zero.
 | |
| *>          = .TRUE.:  All the test ratios 1-15 will be computed and
 | |
| *>                     tested.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRSHN
 | |
| *> \verbatim
 | |
| *>          THRSHN is REAL
 | |
| *>          Threshold for reporting eigenvector normalization error.
 | |
| *>          If the normalization of any eigenvector differs from 1 by
 | |
| *>          more than THRSHN*ulp, then a special error message will be
 | |
| *>          printed.  (This is handled separately from the other tests,
 | |
| *>          since only a compiler or programming error should cause an
 | |
| *>          error message, at least if THRSHN is at least 5--10.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUNIT
 | |
| *> \verbatim
 | |
| *>          NOUNIT is INTEGER
 | |
| *>          The FORTRAN unit number for printing out error messages
 | |
| *>          (e.g., if a routine returns IINFO not equal to 0.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          Used to hold the original A matrix.  Used as input only
 | |
| *>          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
 | |
| *>          DOTYPE(MAXTYP+1)=.TRUE.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A, B, H, T, S1, P1, S2, and P2.
 | |
| *>          It must be at least 1 and at least max( NN ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          Used to hold the original B matrix.  Used as input only
 | |
| *>          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
 | |
| *>          DOTYPE(MAXTYP+1)=.TRUE.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] H
 | |
| *> \verbatim
 | |
| *>          H is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          The upper Hessenberg matrix computed from A by CGGHRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          The upper triangular matrix computed from B by CGGHRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S1
 | |
| *> \verbatim
 | |
| *>          S1 is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          The Schur (upper triangular) matrix computed from H by CHGEQZ
 | |
| *>          when Q and Z are also computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S2
 | |
| *> \verbatim
 | |
| *>          S2 is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          The Schur (upper triangular) matrix computed from H by CHGEQZ
 | |
| *>          when Q and Z are not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] P1
 | |
| *> \verbatim
 | |
| *>          P1 is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          The upper triangular matrix computed from T by CHGEQZ
 | |
| *>          when Q and Z are also computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] P2
 | |
| *> \verbatim
 | |
| *>          P2 is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          The upper triangular matrix computed from T by CHGEQZ
 | |
| *>          when Q and Z are not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX array, dimension (LDU, max(NN))
 | |
| *>          The (left) unitary matrix computed by CGGHRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of U, V, Q, Z, EVECTL, and EVECTR.  It
 | |
| *>          must be at least 1 and at least max( NN ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX array, dimension (LDU, max(NN))
 | |
| *>          The (right) unitary matrix computed by CGGHRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX array, dimension (LDU, max(NN))
 | |
| *>          The (left) unitary matrix computed by CHGEQZ.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDU, max(NN))
 | |
| *>          The (left) unitary matrix computed by CHGEQZ.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHA1
 | |
| *> \verbatim
 | |
| *>          ALPHA1 is COMPLEX array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA1
 | |
| *> \verbatim
 | |
| *>          BETA1 is COMPLEX array, dimension (max(NN))
 | |
| *>          The generalized eigenvalues of (A,B) computed by CHGEQZ
 | |
| *>          when Q, Z, and the full Schur matrices are computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHA3
 | |
| *> \verbatim
 | |
| *>          ALPHA3 is COMPLEX array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA3
 | |
| *> \verbatim
 | |
| *>          BETA3 is COMPLEX array, dimension (max(NN))
 | |
| *>          The generalized eigenvalues of (A,B) computed by CHGEQZ
 | |
| *>          when neither Q, Z, nor the Schur matrices are computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] EVECTL
 | |
| *> \verbatim
 | |
| *>          EVECTL is COMPLEX array, dimension (LDU, max(NN))
 | |
| *>          The (lower triangular) left eigenvector matrix for the
 | |
| *>          matrices in S1 and P1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] EVECTR
 | |
| *> \verbatim
 | |
| *>          EVECTR is COMPLEX array, dimension (LDU, max(NN))
 | |
| *>          The (upper triangular) right eigenvector matrix for the
 | |
| *>          matrices in S1 and P1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The number of entries in WORK.  This must be at least
 | |
| *>          max( 4*N, 2 * N**2, 1 ), for all N=NN(j).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (2*max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] LLWORK
 | |
| *> \verbatim
 | |
| *>          LLWORK is LOGICAL array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (15)
 | |
| *>          The values computed by the tests described above.
 | |
| *>          The values are currently limited to 1/ulp, to avoid
 | |
| *>          overflow.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  A routine returned an error code.  INFO is the
 | |
| *>                absolute value of the INFO value returned.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2016
 | |
| *
 | |
| *> \ingroup complex_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
|      $                   TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1,
 | |
|      $                   S2, P1, P2, U, LDU, V, Q, Z, ALPHA1, BETA1,
 | |
|      $                   ALPHA3, BETA3, EVECTL, EVECTR, WORK, LWORK,
 | |
|      $                   RWORK, LLWORK, RESULT, INFO )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            TSTDIF
 | |
|       INTEGER            INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES
 | |
|       REAL               THRESH, THRSHN
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * ), LLWORK( * )
 | |
|       INTEGER            ISEED( 4 ), NN( * )
 | |
|       REAL               RESULT( 15 ), RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), ALPHA1( * ), ALPHA3( * ),
 | |
|      $                   B( LDA, * ), BETA1( * ), BETA3( * ),
 | |
|      $                   EVECTL( LDU, * ), EVECTR( LDU, * ),
 | |
|      $                   H( LDA, * ), P1( LDA, * ), P2( LDA, * ),
 | |
|      $                   Q( LDU, * ), S1( LDA, * ), S2( LDA, * ),
 | |
|      $                   T( LDA, * ), U( LDU, * ), V( LDU, * ),
 | |
|      $                   WORK( * ), Z( LDU, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
|       INTEGER            MAXTYP
 | |
|       PARAMETER          ( MAXTYP = 26 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BADNN
 | |
|       INTEGER            I1, IADD, IINFO, IN, J, JC, JR, JSIZE, JTYPE,
 | |
|      $                   LWKOPT, MTYPES, N, N1, NERRS, NMATS, NMAX,
 | |
|      $                   NTEST, NTESTT
 | |
|       REAL               ANORM, BNORM, SAFMAX, SAFMIN, TEMP1, TEMP2,
 | |
|      $                   ULP, ULPINV
 | |
|       COMPLEX            CTEMP
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       LOGICAL            LASIGN( MAXTYP ), LBSIGN( MAXTYP )
 | |
|       INTEGER            IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
 | |
|      $                   KATYPE( MAXTYP ), KAZERO( MAXTYP ),
 | |
|      $                   KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
 | |
|      $                   KBZERO( MAXTYP ), KCLASS( MAXTYP ),
 | |
|      $                   KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
 | |
|       REAL               DUMMA( 4 ), RMAGN( 0: 3 )
 | |
|       COMPLEX            CDUMMA( 4 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               CLANGE, SLAMCH
 | |
|       COMPLEX            CLARND
 | |
|       EXTERNAL           CLANGE, SLAMCH, CLARND
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEQR2, CGET51, CGET52, CGGHRD, CHGEQZ, CLACPY,
 | |
|      $                   CLARFG, CLASET, CLATM4, CTGEVC, CUNM2R, SLABAD,
 | |
|      $                   SLASUM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CONJG, MAX, MIN, REAL, SIGN
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               KCLASS / 15*1, 10*2, 1*3 /
 | |
|       DATA               KZ1 / 0, 1, 2, 1, 3, 3 /
 | |
|       DATA               KZ2 / 0, 0, 1, 2, 1, 1 /
 | |
|       DATA               KADD / 0, 0, 0, 0, 3, 2 /
 | |
|       DATA               KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
 | |
|      $                   4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
 | |
|       DATA               KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
 | |
|      $                   1, 1, -4, 2, -4, 8*8, 0 /
 | |
|       DATA               KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
 | |
|      $                   4*5, 4*3, 1 /
 | |
|       DATA               KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
 | |
|      $                   4*6, 4*4, 1 /
 | |
|       DATA               KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
 | |
|      $                   2, 1 /
 | |
|       DATA               KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
 | |
|      $                   2, 1 /
 | |
|       DATA               KTRIAN / 16*0, 10*1 /
 | |
|       DATA               LASIGN / 6*.FALSE., .TRUE., .FALSE., 2*.TRUE.,
 | |
|      $                   2*.FALSE., 3*.TRUE., .FALSE., .TRUE.,
 | |
|      $                   3*.FALSE., 5*.TRUE., .FALSE. /
 | |
|       DATA               LBSIGN / 7*.FALSE., .TRUE., 2*.FALSE.,
 | |
|      $                   2*.TRUE., 2*.FALSE., .TRUE., .FALSE., .TRUE.,
 | |
|      $                   9*.FALSE. /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       BADNN = .FALSE.
 | |
|       NMAX = 1
 | |
|       DO 10 J = 1, NSIZES
 | |
|          NMAX = MAX( NMAX, NN( J ) )
 | |
|          IF( NN( J ).LT.0 )
 | |
|      $      BADNN = .TRUE.
 | |
|    10 CONTINUE
 | |
| *
 | |
|       LWKOPT = MAX( 2*NMAX*NMAX, 4*NMAX, 1 )
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       IF( NSIZES.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( BADNN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NTYPES.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( THRESH.LT.ZERO ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
 | |
|          INFO = -19
 | |
|       ELSE IF( LWKOPT.GT.LWORK ) THEN
 | |
|          INFO = -30
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CCHKGG', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | |
|       SAFMIN = SAFMIN / ULP
 | |
|       SAFMAX = ONE / SAFMIN
 | |
|       CALL SLABAD( SAFMIN, SAFMAX )
 | |
|       ULPINV = ONE / ULP
 | |
| *
 | |
| *     The values RMAGN(2:3) depend on N, see below.
 | |
| *
 | |
|       RMAGN( 0 ) = ZERO
 | |
|       RMAGN( 1 ) = ONE
 | |
| *
 | |
| *     Loop over sizes, types
 | |
| *
 | |
|       NTESTT = 0
 | |
|       NERRS = 0
 | |
|       NMATS = 0
 | |
| *
 | |
|       DO 240 JSIZE = 1, NSIZES
 | |
|          N = NN( JSIZE )
 | |
|          N1 = MAX( 1, N )
 | |
|          RMAGN( 2 ) = SAFMAX*ULP / REAL( N1 )
 | |
|          RMAGN( 3 ) = SAFMIN*ULPINV*N1
 | |
| *
 | |
|          IF( NSIZES.NE.1 ) THEN
 | |
|             MTYPES = MIN( MAXTYP, NTYPES )
 | |
|          ELSE
 | |
|             MTYPES = MIN( MAXTYP+1, NTYPES )
 | |
|          END IF
 | |
| *
 | |
|          DO 230 JTYPE = 1, MTYPES
 | |
|             IF( .NOT.DOTYPE( JTYPE ) )
 | |
|      $         GO TO 230
 | |
|             NMATS = NMATS + 1
 | |
|             NTEST = 0
 | |
| *
 | |
| *           Save ISEED in case of an error.
 | |
| *
 | |
|             DO 20 J = 1, 4
 | |
|                IOLDSD( J ) = ISEED( J )
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Initialize RESULT
 | |
| *
 | |
|             DO 30 J = 1, 15
 | |
|                RESULT( J ) = ZERO
 | |
|    30       CONTINUE
 | |
| *
 | |
| *           Compute A and B
 | |
| *
 | |
| *           Description of control parameters:
 | |
| *
 | |
| *           KCLASS: =1 means w/o rotation, =2 means w/ rotation,
 | |
| *                   =3 means random.
 | |
| *           KATYPE: the "type" to be passed to CLATM4 for computing A.
 | |
| *           KAZERO: the pattern of zeros on the diagonal for A:
 | |
| *                   =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
 | |
| *                   =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
 | |
| *                   =6: ( 0, 1, 0, xxx, 0 ).  (xxx means a string of
 | |
| *                   non-zero entries.)
 | |
| *           KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
 | |
| *                   =2: large, =3: small.
 | |
| *           LASIGN: .TRUE. if the diagonal elements of A are to be
 | |
| *                   multiplied by a random magnitude 1 number.
 | |
| *           KBTYPE, KBZERO, KBMAGN, LBSIGN: the same, but for B.
 | |
| *           KTRIAN: =0: don't fill in the upper triangle, =1: do.
 | |
| *           KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
 | |
| *           RMAGN:  used to implement KAMAGN and KBMAGN.
 | |
| *
 | |
|             IF( MTYPES.GT.MAXTYP )
 | |
|      $         GO TO 110
 | |
|             IINFO = 0
 | |
|             IF( KCLASS( JTYPE ).LT.3 ) THEN
 | |
| *
 | |
| *              Generate A (w/o rotation)
 | |
| *
 | |
|                IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
 | |
|                   IN = 2*( ( N-1 ) / 2 ) + 1
 | |
|                   IF( IN.NE.N )
 | |
|      $               CALL CLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
 | |
|                ELSE
 | |
|                   IN = N
 | |
|                END IF
 | |
|                CALL CLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
 | |
|      $                      KZ2( KAZERO( JTYPE ) ), LASIGN( JTYPE ),
 | |
|      $                      RMAGN( KAMAGN( JTYPE ) ), ULP,
 | |
|      $                      RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 4,
 | |
|      $                      ISEED, A, LDA )
 | |
|                IADD = KADD( KAZERO( JTYPE ) )
 | |
|                IF( IADD.GT.0 .AND. IADD.LE.N )
 | |
|      $            A( IADD, IADD ) = RMAGN( KAMAGN( JTYPE ) )
 | |
| *
 | |
| *              Generate B (w/o rotation)
 | |
| *
 | |
|                IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
 | |
|                   IN = 2*( ( N-1 ) / 2 ) + 1
 | |
|                   IF( IN.NE.N )
 | |
|      $               CALL CLASET( 'Full', N, N, CZERO, CZERO, B, LDA )
 | |
|                ELSE
 | |
|                   IN = N
 | |
|                END IF
 | |
|                CALL CLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
 | |
|      $                      KZ2( KBZERO( JTYPE ) ), LBSIGN( JTYPE ),
 | |
|      $                      RMAGN( KBMAGN( JTYPE ) ), ONE,
 | |
|      $                      RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 4,
 | |
|      $                      ISEED, B, LDA )
 | |
|                IADD = KADD( KBZERO( JTYPE ) )
 | |
|                IF( IADD.NE.0 )
 | |
|      $            B( IADD, IADD ) = RMAGN( KBMAGN( JTYPE ) )
 | |
| *
 | |
|                IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
 | |
| *
 | |
| *                 Include rotations
 | |
| *
 | |
| *                 Generate U, V as Householder transformations times a
 | |
| *                 diagonal matrix.  (Note that CLARFG makes U(j,j) and
 | |
| *                 V(j,j) real.)
 | |
| *
 | |
|                   DO 50 JC = 1, N - 1
 | |
|                      DO 40 JR = JC, N
 | |
|                         U( JR, JC ) = CLARND( 3, ISEED )
 | |
|                         V( JR, JC ) = CLARND( 3, ISEED )
 | |
|    40                CONTINUE
 | |
|                      CALL CLARFG( N+1-JC, U( JC, JC ), U( JC+1, JC ), 1,
 | |
|      $                            WORK( JC ) )
 | |
|                      WORK( 2*N+JC ) = SIGN( ONE, REAL( U( JC, JC ) ) )
 | |
|                      U( JC, JC ) = CONE
 | |
|                      CALL CLARFG( N+1-JC, V( JC, JC ), V( JC+1, JC ), 1,
 | |
|      $                            WORK( N+JC ) )
 | |
|                      WORK( 3*N+JC ) = SIGN( ONE, REAL( V( JC, JC ) ) )
 | |
|                      V( JC, JC ) = CONE
 | |
|    50             CONTINUE
 | |
|                   CTEMP = CLARND( 3, ISEED )
 | |
|                   U( N, N ) = CONE
 | |
|                   WORK( N ) = CZERO
 | |
|                   WORK( 3*N ) = CTEMP / ABS( CTEMP )
 | |
|                   CTEMP = CLARND( 3, ISEED )
 | |
|                   V( N, N ) = CONE
 | |
|                   WORK( 2*N ) = CZERO
 | |
|                   WORK( 4*N ) = CTEMP / ABS( CTEMP )
 | |
| *
 | |
| *                 Apply the diagonal matrices
 | |
| *
 | |
|                   DO 70 JC = 1, N
 | |
|                      DO 60 JR = 1, N
 | |
|                         A( JR, JC ) = WORK( 2*N+JR )*
 | |
|      $                                CONJG( WORK( 3*N+JC ) )*
 | |
|      $                                A( JR, JC )
 | |
|                         B( JR, JC ) = WORK( 2*N+JR )*
 | |
|      $                                CONJG( WORK( 3*N+JC ) )*
 | |
|      $                                B( JR, JC )
 | |
|    60                CONTINUE
 | |
|    70             CONTINUE
 | |
|                   CALL CUNM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, A,
 | |
|      $                         LDA, WORK( 2*N+1 ), IINFO )
 | |
|                   IF( IINFO.NE.0 )
 | |
|      $               GO TO 100
 | |
|                   CALL CUNM2R( 'R', 'C', N, N, N-1, V, LDU, WORK( N+1 ),
 | |
|      $                         A, LDA, WORK( 2*N+1 ), IINFO )
 | |
|                   IF( IINFO.NE.0 )
 | |
|      $               GO TO 100
 | |
|                   CALL CUNM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, B,
 | |
|      $                         LDA, WORK( 2*N+1 ), IINFO )
 | |
|                   IF( IINFO.NE.0 )
 | |
|      $               GO TO 100
 | |
|                   CALL CUNM2R( 'R', 'C', N, N, N-1, V, LDU, WORK( N+1 ),
 | |
|      $                         B, LDA, WORK( 2*N+1 ), IINFO )
 | |
|                   IF( IINFO.NE.0 )
 | |
|      $               GO TO 100
 | |
|                END IF
 | |
|             ELSE
 | |
| *
 | |
| *              Random matrices
 | |
| *
 | |
|                DO 90 JC = 1, N
 | |
|                   DO 80 JR = 1, N
 | |
|                      A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
 | |
|      $                             CLARND( 4, ISEED )
 | |
|                      B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
 | |
|      $                             CLARND( 4, ISEED )
 | |
|    80             CONTINUE
 | |
|    90          CONTINUE
 | |
|             END IF
 | |
| *
 | |
|             ANORM = CLANGE( '1', N, N, A, LDA, RWORK )
 | |
|             BNORM = CLANGE( '1', N, N, B, LDA, RWORK )
 | |
| *
 | |
|   100       CONTINUE
 | |
| *
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|   110       CONTINUE
 | |
| *
 | |
| *           Call CGEQR2, CUNM2R, and CGGHRD to compute H, T, U, and V
 | |
| *
 | |
|             CALL CLACPY( ' ', N, N, A, LDA, H, LDA )
 | |
|             CALL CLACPY( ' ', N, N, B, LDA, T, LDA )
 | |
|             NTEST = 1
 | |
|             RESULT( 1 ) = ULPINV
 | |
| *
 | |
|             CALL CGEQR2( N, N, T, LDA, WORK, WORK( N+1 ), IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CGEQR2', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
|             CALL CUNM2R( 'L', 'C', N, N, N, T, LDA, WORK, H, LDA,
 | |
|      $                   WORK( N+1 ), IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CUNM2R', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
|             CALL CLASET( 'Full', N, N, CZERO, CONE, U, LDU )
 | |
|             CALL CUNM2R( 'R', 'N', N, N, N, T, LDA, WORK, U, LDU,
 | |
|      $                   WORK( N+1 ), IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CUNM2R', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
|             CALL CGGHRD( 'V', 'I', N, 1, N, H, LDA, T, LDA, U, LDU, V,
 | |
|      $                   LDU, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CGGHRD', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
|             NTEST = 4
 | |
| *
 | |
| *           Do tests 1--4
 | |
| *
 | |
|             CALL CGET51( 1, N, A, LDA, H, LDA, U, LDU, V, LDU, WORK,
 | |
|      $                   RWORK, RESULT( 1 ) )
 | |
|             CALL CGET51( 1, N, B, LDA, T, LDA, U, LDU, V, LDU, WORK,
 | |
|      $                   RWORK, RESULT( 2 ) )
 | |
|             CALL CGET51( 3, N, B, LDA, T, LDA, U, LDU, U, LDU, WORK,
 | |
|      $                   RWORK, RESULT( 3 ) )
 | |
|             CALL CGET51( 3, N, B, LDA, T, LDA, V, LDU, V, LDU, WORK,
 | |
|      $                   RWORK, RESULT( 4 ) )
 | |
| *
 | |
| *           Call CHGEQZ to compute S1, P1, S2, P2, Q, and Z, do tests.
 | |
| *
 | |
| *           Compute T1 and UZ
 | |
| *
 | |
| *           Eigenvalues only
 | |
| *
 | |
|             CALL CLACPY( ' ', N, N, H, LDA, S2, LDA )
 | |
|             CALL CLACPY( ' ', N, N, T, LDA, P2, LDA )
 | |
|             NTEST = 5
 | |
|             RESULT( 5 ) = ULPINV
 | |
| *
 | |
|             CALL CHGEQZ( 'E', 'N', 'N', N, 1, N, S2, LDA, P2, LDA,
 | |
|      $                   ALPHA3, BETA3, Q, LDU, Z, LDU, WORK, LWORK,
 | |
|      $                   RWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CHGEQZ(E)', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
| *           Eigenvalues and Full Schur Form
 | |
| *
 | |
|             CALL CLACPY( ' ', N, N, H, LDA, S2, LDA )
 | |
|             CALL CLACPY( ' ', N, N, T, LDA, P2, LDA )
 | |
| *
 | |
|             CALL CHGEQZ( 'S', 'N', 'N', N, 1, N, S2, LDA, P2, LDA,
 | |
|      $                   ALPHA1, BETA1, Q, LDU, Z, LDU, WORK, LWORK,
 | |
|      $                   RWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CHGEQZ(S)', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
| *           Eigenvalues, Schur Form, and Schur Vectors
 | |
| *
 | |
|             CALL CLACPY( ' ', N, N, H, LDA, S1, LDA )
 | |
|             CALL CLACPY( ' ', N, N, T, LDA, P1, LDA )
 | |
| *
 | |
|             CALL CHGEQZ( 'S', 'I', 'I', N, 1, N, S1, LDA, P1, LDA,
 | |
|      $                   ALPHA1, BETA1, Q, LDU, Z, LDU, WORK, LWORK,
 | |
|      $                   RWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CHGEQZ(V)', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
|             NTEST = 8
 | |
| *
 | |
| *           Do Tests 5--8
 | |
| *
 | |
|             CALL CGET51( 1, N, H, LDA, S1, LDA, Q, LDU, Z, LDU, WORK,
 | |
|      $                   RWORK, RESULT( 5 ) )
 | |
|             CALL CGET51( 1, N, T, LDA, P1, LDA, Q, LDU, Z, LDU, WORK,
 | |
|      $                   RWORK, RESULT( 6 ) )
 | |
|             CALL CGET51( 3, N, T, LDA, P1, LDA, Q, LDU, Q, LDU, WORK,
 | |
|      $                   RWORK, RESULT( 7 ) )
 | |
|             CALL CGET51( 3, N, T, LDA, P1, LDA, Z, LDU, Z, LDU, WORK,
 | |
|      $                   RWORK, RESULT( 8 ) )
 | |
| *
 | |
| *           Compute the Left and Right Eigenvectors of (S1,P1)
 | |
| *
 | |
| *           9: Compute the left eigenvector Matrix without
 | |
| *              back transforming:
 | |
| *
 | |
|             NTEST = 9
 | |
|             RESULT( 9 ) = ULPINV
 | |
| *
 | |
| *           To test "SELECT" option, compute half of the eigenvectors
 | |
| *           in one call, and half in another
 | |
| *
 | |
|             I1 = N / 2
 | |
|             DO 120 J = 1, I1
 | |
|                LLWORK( J ) = .TRUE.
 | |
|   120       CONTINUE
 | |
|             DO 130 J = I1 + 1, N
 | |
|                LLWORK( J ) = .FALSE.
 | |
|   130       CONTINUE
 | |
| *
 | |
|             CALL CTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
 | |
|      $                   LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CTGEVC(L,S1)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
|             I1 = IN
 | |
|             DO 140 J = 1, I1
 | |
|                LLWORK( J ) = .FALSE.
 | |
|   140       CONTINUE
 | |
|             DO 150 J = I1 + 1, N
 | |
|                LLWORK( J ) = .TRUE.
 | |
|   150       CONTINUE
 | |
| *
 | |
|             CALL CTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA,
 | |
|      $                   EVECTL( 1, I1+1 ), LDU, CDUMMA, LDU, N, IN,
 | |
|      $                   WORK, RWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CTGEVC(L,S2)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
|             CALL CGET52( .TRUE., N, S1, LDA, P1, LDA, EVECTL, LDU,
 | |
|      $                   ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) )
 | |
|             RESULT( 9 ) = DUMMA( 1 )
 | |
|             IF( DUMMA( 2 ).GT.THRSHN ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9998 )'Left', 'CTGEVC(HOWMNY=S)',
 | |
|      $            DUMMA( 2 ), N, JTYPE, IOLDSD
 | |
|             END IF
 | |
| *
 | |
| *           10: Compute the left eigenvector Matrix with
 | |
| *               back transforming:
 | |
| *
 | |
|             NTEST = 10
 | |
|             RESULT( 10 ) = ULPINV
 | |
|             CALL CLACPY( 'F', N, N, Q, LDU, EVECTL, LDU )
 | |
|             CALL CTGEVC( 'L', 'B', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
 | |
|      $                   LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CTGEVC(L,B)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
|             CALL CGET52( .TRUE., N, H, LDA, T, LDA, EVECTL, LDU, ALPHA1,
 | |
|      $                   BETA1, WORK, RWORK, DUMMA( 1 ) )
 | |
|             RESULT( 10 ) = DUMMA( 1 )
 | |
|             IF( DUMMA( 2 ).GT.THRSHN ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9998 )'Left', 'CTGEVC(HOWMNY=B)',
 | |
|      $            DUMMA( 2 ), N, JTYPE, IOLDSD
 | |
|             END IF
 | |
| *
 | |
| *           11: Compute the right eigenvector Matrix without
 | |
| *               back transforming:
 | |
| *
 | |
|             NTEST = 11
 | |
|             RESULT( 11 ) = ULPINV
 | |
| *
 | |
| *           To test "SELECT" option, compute half of the eigenvectors
 | |
| *           in one call, and half in another
 | |
| *
 | |
|             I1 = N / 2
 | |
|             DO 160 J = 1, I1
 | |
|                LLWORK( J ) = .TRUE.
 | |
|   160       CONTINUE
 | |
|             DO 170 J = I1 + 1, N
 | |
|                LLWORK( J ) = .FALSE.
 | |
|   170       CONTINUE
 | |
| *
 | |
|             CALL CTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, CDUMMA,
 | |
|      $                   LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CTGEVC(R,S1)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
|             I1 = IN
 | |
|             DO 180 J = 1, I1
 | |
|                LLWORK( J ) = .FALSE.
 | |
|   180       CONTINUE
 | |
|             DO 190 J = I1 + 1, N
 | |
|                LLWORK( J ) = .TRUE.
 | |
|   190       CONTINUE
 | |
| *
 | |
|             CALL CTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, CDUMMA,
 | |
|      $                   LDU, EVECTR( 1, I1+1 ), LDU, N, IN, WORK,
 | |
|      $                   RWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CTGEVC(R,S2)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
|             CALL CGET52( .FALSE., N, S1, LDA, P1, LDA, EVECTR, LDU,
 | |
|      $                   ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) )
 | |
|             RESULT( 11 ) = DUMMA( 1 )
 | |
|             IF( DUMMA( 2 ).GT.THRESH ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9998 )'Right', 'CTGEVC(HOWMNY=S)',
 | |
|      $            DUMMA( 2 ), N, JTYPE, IOLDSD
 | |
|             END IF
 | |
| *
 | |
| *           12: Compute the right eigenvector Matrix with
 | |
| *               back transforming:
 | |
| *
 | |
|             NTEST = 12
 | |
|             RESULT( 12 ) = ULPINV
 | |
|             CALL CLACPY( 'F', N, N, Z, LDU, EVECTR, LDU )
 | |
|             CALL CTGEVC( 'R', 'B', LLWORK, N, S1, LDA, P1, LDA, CDUMMA,
 | |
|      $                   LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'CTGEVC(R,B)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 210
 | |
|             END IF
 | |
| *
 | |
|             CALL CGET52( .FALSE., N, H, LDA, T, LDA, EVECTR, LDU,
 | |
|      $                   ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) )
 | |
|             RESULT( 12 ) = DUMMA( 1 )
 | |
|             IF( DUMMA( 2 ).GT.THRESH ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9998 )'Right', 'CTGEVC(HOWMNY=B)',
 | |
|      $            DUMMA( 2 ), N, JTYPE, IOLDSD
 | |
|             END IF
 | |
| *
 | |
| *           Tests 13--15 are done only on request
 | |
| *
 | |
|             IF( TSTDIF ) THEN
 | |
| *
 | |
| *              Do Tests 13--14
 | |
| *
 | |
|                CALL CGET51( 2, N, S1, LDA, S2, LDA, Q, LDU, Z, LDU,
 | |
|      $                      WORK, RWORK, RESULT( 13 ) )
 | |
|                CALL CGET51( 2, N, P1, LDA, P2, LDA, Q, LDU, Z, LDU,
 | |
|      $                      WORK, RWORK, RESULT( 14 ) )
 | |
| *
 | |
| *              Do Test 15
 | |
| *
 | |
|                TEMP1 = ZERO
 | |
|                TEMP2 = ZERO
 | |
|                DO 200 J = 1, N
 | |
|                   TEMP1 = MAX( TEMP1, ABS( ALPHA1( J )-ALPHA3( J ) ) )
 | |
|                   TEMP2 = MAX( TEMP2, ABS( BETA1( J )-BETA3( J ) ) )
 | |
|   200          CONTINUE
 | |
| *
 | |
|                TEMP1 = TEMP1 / MAX( SAFMIN, ULP*MAX( TEMP1, ANORM ) )
 | |
|                TEMP2 = TEMP2 / MAX( SAFMIN, ULP*MAX( TEMP2, BNORM ) )
 | |
|                RESULT( 15 ) = MAX( TEMP1, TEMP2 )
 | |
|                NTEST = 15
 | |
|             ELSE
 | |
|                RESULT( 13 ) = ZERO
 | |
|                RESULT( 14 ) = ZERO
 | |
|                RESULT( 15 ) = ZERO
 | |
|                NTEST = 12
 | |
|             END IF
 | |
| *
 | |
| *           End of Loop -- Check for RESULT(j) > THRESH
 | |
| *
 | |
|   210       CONTINUE
 | |
| *
 | |
|             NTESTT = NTESTT + NTEST
 | |
| *
 | |
| *           Print out tests which fail.
 | |
| *
 | |
|             DO 220 JR = 1, NTEST
 | |
|                IF( RESULT( JR ).GE.THRESH ) THEN
 | |
| *
 | |
| *                 If this is the first test to fail,
 | |
| *                 print a header to the data file.
 | |
| *
 | |
|                   IF( NERRS.EQ.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9997 )'CGG'
 | |
| *
 | |
| *                    Matrix types
 | |
| *
 | |
|                      WRITE( NOUNIT, FMT = 9996 )
 | |
|                      WRITE( NOUNIT, FMT = 9995 )
 | |
|                      WRITE( NOUNIT, FMT = 9994 )'Unitary'
 | |
| *
 | |
| *                    Tests performed
 | |
| *
 | |
|                      WRITE( NOUNIT, FMT = 9993 )'unitary', '*',
 | |
|      $                  'conjugate transpose', ( '*', J = 1, 10 )
 | |
| *
 | |
|                   END IF
 | |
|                   NERRS = NERRS + 1
 | |
|                   IF( RESULT( JR ).LT.10000.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
 | |
|      $                  RESULT( JR )
 | |
|                   ELSE
 | |
|                      WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
 | |
|      $                  RESULT( JR )
 | |
|                   END IF
 | |
|                END IF
 | |
|   220       CONTINUE
 | |
| *
 | |
|   230    CONTINUE
 | |
|   240 CONTINUE
 | |
| *
 | |
| *     Summary
 | |
| *
 | |
|       CALL SLASUM( 'CGG', NOUNIT, NERRS, NTESTT )
 | |
|       RETURN
 | |
| *
 | |
|  9999 FORMAT( ' CCHKGG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | |
|      $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | |
| *
 | |
|  9998 FORMAT( ' CCHKGG: ', A, ' Eigenvectors from ', A, ' incorrectly ',
 | |
|      $      'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
 | |
|      $      'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
 | |
|      $      ')' )
 | |
| *
 | |
|  9997 FORMAT( 1X, A3, ' -- Complex Generalized eigenvalue problem' )
 | |
| *
 | |
|  9996 FORMAT( ' Matrix types (see CCHKGG for details): ' )
 | |
| *
 | |
|  9995 FORMAT( ' Special Matrices:', 23X,
 | |
|      $      '(J''=transposed Jordan block)',
 | |
|      $      / '   1=(0,0)  2=(I,0)  3=(0,I)  4=(I,I)  5=(J'',J'')  ',
 | |
|      $      '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices:  ( ',
 | |
|      $      'D=diag(0,1,2,...) )', / '   7=(D,I)   9=(large*D, small*I',
 | |
|      $      ')  11=(large*I, small*D)  13=(large*D, large*I)', /
 | |
|      $      '   8=(I,D)  10=(small*D, large*I)  12=(small*I, large*D) ',
 | |
|      $      ' 14=(small*D, small*I)', / '  15=(D, reversed D)' )
 | |
|  9994 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
 | |
|      $      / '  16=Transposed Jordan Blocks             19=geometric ',
 | |
|      $      'alpha, beta=0,1', / '  17=arithm. alpha&beta             ',
 | |
|      $      '      20=arithmetic alpha, beta=0,1', / '  18=clustered ',
 | |
|      $      'alpha, beta=0,1            21=random alpha, beta=0,1',
 | |
|      $      / ' Large & Small Matrices:', / '  22=(large, small)   ',
 | |
|      $      '23=(small,large)    24=(small,small)    25=(large,large)',
 | |
|      $      / '  26=random O(1) matrices.' )
 | |
| *
 | |
|  9993 FORMAT( / ' Tests performed:   (H is Hessenberg, S is Schur, B, ',
 | |
|      $      'T, P are triangular,', / 20X, 'U, V, Q, and Z are ', A,
 | |
|      $      ', l and r are the', / 20X,
 | |
|      $      'appropriate left and right eigenvectors, resp., a is',
 | |
|      $      / 20X, 'alpha, b is beta, and ', A, ' means ', A, '.)',
 | |
|      $      / ' 1 = | A - U H V', A,
 | |
|      $      ' | / ( |A| n ulp )      2 = | B - U T V', A,
 | |
|      $      ' | / ( |B| n ulp )', / ' 3 = | I - UU', A,
 | |
|      $      ' | / ( n ulp )             4 = | I - VV', A,
 | |
|      $      ' | / ( n ulp )', / ' 5 = | H - Q S Z', A,
 | |
|      $      ' | / ( |H| n ulp )', 6X, '6 = | T - Q P Z', A,
 | |
|      $      ' | / ( |T| n ulp )', / ' 7 = | I - QQ', A,
 | |
|      $      ' | / ( n ulp )             8 = | I - ZZ', A,
 | |
|      $      ' | / ( n ulp )', / ' 9 = max | ( b S - a P )', A,
 | |
|      $      ' l | / const.  10 = max | ( b H - a T )', A,
 | |
|      $      ' l | / const.', /
 | |
|      $      ' 11= max | ( b S - a P ) r | / const.   12 = max | ( b H',
 | |
|      $      ' - a T ) r | / const.', / 1X )
 | |
| *
 | |
|  9992 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
 | |
|      $      4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
 | |
|  9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
 | |
|      $      4( I4, ',' ), ' result ', I2, ' is', 1P, E10.3 )
 | |
| *
 | |
| *     End of CCHKGG
 | |
| *
 | |
|       END
 |